

 BEE Script

User Reference

Version 1.0 20/11/2003 9:31

Table of Content

1 INTRODUCTION..1
1.1 HOW TO USE THIS DOCUMENT ..1
1.2 BACKGROUND...2
1.3 DESIGN PRINCIPLES ..2

1.3.1 Black-box Principle...2
1.3.2 Generosity Principle..2
1.3.3 Evolution Principle..3

1.4 CHARACTERISING BEE...3
1.5 HOW BEE RUNS..4
1.6 WHAT IS A BEE WEB SITE ...5

2 CROFT – CUSTOMER RESOURCE ONLINE FACILITY TABLES...7
2.1 RESOURCE ALLOCATION ..7
2.2 AUTHENTICATION...8
2.3 SCHEME...9

3 BEE VARIABLES..11
3.1 BEE VARIABLE NAME ...11

3.1.1 General Classes (Object Classes)...12
3.1.2 Special Classes ..12
3.1.3 System Classes...14

3.2 BEE VARIABLE VALUE..28
3.3 BEE CONVERSIONS ..30

3.3.1 Intrinsic Conversions...30
3.3.2 User-defined Conversions...44
3.3.3 To String or Not to String..47

4 BEE SYNTAX...49
4.1 GENERAL SYNTAX..49

Accsoft Internet Services

BEE Script User Reference 2

4.2 BEE SCRIPT SYNTAX ...50
4.3 BEE TAG SYNTAX..51
4.4 FROM SCRIPT TO TAG ...52

5 BEE COMMANDS ..53
5.1 VARIABLE OPERATIONS ...56

5.1.1 var – assign a value to a variable, create an object, or display a value...56
5.1.2 link – create a Reference to a variable...59
5.1.3 clear – undefine a variable..60
5.1.4 group – promote elements into variables (a matrix)..61

5.2 CONDITIONAL ...64
5.2.1 if – conditional execution of a block...64
5.2.2 else – alternative execution block ...65
5.2.3 elseif – conditional alternative execution block ...65
5.2.4 switch – conditional execution of blocks based value matching ...67
5.2.5 case – execution block matching a value..68
5.2.6 hide – unconditional non-execution of a block ..68
5.2.7 show – unconditional execution of a block...69

5.3 LOOP..69
5.3.1 foreach – loop through a variable or a data access result..69
5.3.2 for – loop through a series of numeric values..73
5.3.3 while – loop while a condition remains true ..75
5.3.4 continue – jump to the beginning of the loop ...76
5.3.5 break – exit the loop and jump to after the end of it...76

5.4 MODULE CALLING..77
5.4.1 function – define a function and its arguments ..77
5.4.2 return – stop executing a function and return to the caller ...80
5.4.3 global – declare a variable to be from the global Context..80
5.4.4 parent – declare a variable to be from the parent Context..81
5.4.5 include – include a block of code from a file..82
5.4.6 exec – execute a system program..82
5.4.7 exit – stop execution and end the web page display...83

5.5 REMOTE CALLING...83
5.5.1 connector – define a connection point for a remote function call...83
5.5.2 call – call a remote function via a URL..86
5.5.3 xmlparse – parse an XML document..89

5.6 AUTHENTICATION...90
5.6.1 access – define an access control block ...90
5.6.2 login – authenticate a session with username and password..94
5.6.3 logout – unauthenticate a session...95

5.7 DATA ACCESS...96
5.7.1 database – access the database and prepare the result...96
5.7.2 dbtree – convert a database result into a non-circular tree ..98

5.8 SOCKET ...101
5.8.1 socketcreate – create an endpoint for communication ..102
5.8.2 socketbind – bind an address and a port to a socket ...102
5.8.3 socketlisten – listen (wait) for a connection on a socket..103
5.8.4 socketaccept – accept a connection on a socket ..103
5.8.5 socketconnect – make a connection on a socket ..104
5.8.6 socketread – read a message from a socket ...104
5.8.7 socketwrite – write a message to a socket ..105
5.8.8 socketclose – close a socket...105
5.8.9 socketcontrol – control some behaviours of the socket..106

5.9 SPECIAL FUNCTIONS ...106
5.9.1 mailto – send an e-mail ...106
5.9.2 text – specify an online editable and searchable text...108

BEE Script User Reference 3

5.9.3 auth – control authentication information..114
5.9.4 scheme – access the scheme file..114
5.9.5 output – control the display...114
5.9.6 sleep – pause the operation...115
5.9.7 virtualpage – indicate a Virtual Page template page (optional)...115

6 DATABASE OPERATION..117
6.1 DATABASE VARIABLES ..117

6.1.1 Argument Variables (Input to the system)..117
6.1.2 System Variables (Output from the system) ...121
6.1.3 Paging Variables (for display paging) ...124

6.2 DATABASE ACTIONS...128
6.2.1 Data Access Actions ..128
6.2.2 VirtualBase Actions...131
6.2.3 Supplementary Actions..132

7 CONTENT MANAGEMENT..134
7.1 WHAT IS WEB CONTENT ..134
7.2 VIRTUAL PAGE..134

8 OBJECTS AND CLASSES...136
8.1 CLASSES ..136
8.2 OBJECTS ..136

8.2.1 The Constructor...136
8.2.2 Calling an Object Method...137
8.2.3 Polymorphism..138
8.2.4 Inheritance ...138
8.2.5 Object within Object..140
8.2.6 Database Object – an Example ..142

9 INTERFACE WITH OTHER LANGUAGES..149
9.1 BEE AND HTML..149
9.2 BEE AND JAVASCRIPT ...149
9.3 BEE AND PHP ..150

9.3.1 BEE_get($value)..150
9.3.2 BEE_var($varname) ...150
9.3.3 BEE_isset($varname)..151
9.3.4 BEE_set($varname, $string)...151
9.3.5 BEE_clear($varname)...151
9.3.6 BEE_convert($value, $conversion)..152
9.3.7 BEE_do($funcname) ...152

10 GLOSSARY..154

1 Int roduc t ion

BEE stands for Business Electronic Enterprise. It is a server-side scripting language for
commercial web application development. The web server extracts the program script
code sections from the web page, runs them, and substitutes the code sections with their
corresponding execution output, then send the whole page to the client’s browser.

Bearing the word "Business" in its name, BEE was designed to be business oriented. The
syntax is simple and flexible, and comes with two different forms: BEE Script and BEE
Tag. This design makes it easy for BEE to mix with HTML Tags and other scripting
languages in the same page.

BEE has been developed by OnMyWeb Internet Services, which is a web hosting
provider. Naturally, the design of BEE has taken into considerations of multiple websites
running on the same physical server with shared resources. Ownership, management
right, resource allocation and security are among the primary design criteria. As a result,
these features are intimately integrated into a web hosting environment instead of as add-
on patches.

The administration effort is centralised and kept to minimal; most of the settings are
automated and done once upon website creation. No unnecessary initialisations in the
program codes and most operations (especially for database access) are one-liner. This
architecture makes BEE ideal for hosting firms for SMEs (Small to Medium Enterprises).

Although the initial version of BEE Script is implemented on PHP and Apache, the syntax
and design is platform independent, and therefore can be implemented on other platforms
that support server-side scripting.

1.1 How to use this document

This document is a plain description of the BEE Script system. It is a "brain-dump" of the
creator’s head. The presentation and layout may not be suitable for the purpose of
learning how to use BEE Script. However, it is aiming at a complete interface that is
visible to BEE developers. If some information is missing, it is because the information is
not required at all to develop BEE Script applications (or not yet written as this document is
still evolving on a daily basis.)

If you need a learning guide that shows only the commonly used features and the
technique and examples to use them, please consult the BEE Script User Guide.

BEE Script User Reference 2

1.2 Background

The development of BEE starts from an experimental technology called OLDPAL (OnLine
Database Programming Accelerator Language). OLDPAL was a set of non-procedural
database access and display script aiming at simplifying the mSQL coding (and
subsequently MySQL coding). As the name implies, it severs only database access,
which happened to be the dominant process in the commercial web applications that
Accsoft (the developer of BEE) writes and hosts for its customers.

OLDPAL was nothing like the BEE Script that we see today. However, OLDPAL’s core
concept and the design principles have been inherited by BEE, which has taken the idea
to a new level since. Even now, some low level OLDPAL objects are still being used
within BEE.

1.3 Design Principles

The original design principles were documented in "Initial OLDPAL Design". They include
the Black-box Principle, the Generosity Principle and the Evolution Principle.

1.3.1 Black-box Princ iple

BEE was designed to run on a shared hosted environment. That means websites from
different owners may run on the same network or even the same machine. It is therefore
crucial to make sure the hosted websites can only access the resources they are
designated to and nothing else, so that they will not intervene with each other and no
privacy will be breached. To the website, the platform and the resources are contained in
a "black-box", and no knowledge of them needs to be of concern to the codes.

Here are the main design criteria derived from the Black-box Principle:

x� A web page cannot access any databases and authentication data except for the
ones designated.

x� Database operations must not be affected by the choice of the database platform and
its location. Subsequent changes of such choices must not require any code
changes.

x� Authentication server location and arrangement are transparent to the code.
Subsequent changes of the server mechanism must not require any code changes.

1.3.2 Generosity Princ iple

Sharing of code is commonly required but not commonly archived. The main obstacles
towards code sharing is that too much knowledge about the environment is contained in
every piece of codes, and when such environment changes, the piece of code needs to
be rewritten. As long as there require adaptations, there is no true sharing.

BEE Script User Reference 3

Object-orientedness solves this issue to a certain extent in separating the atomic pieces of
codes. In a web portal environment, we need to separate the business logics (the codes)
and the appearance (the artwork), so that each client have their own "skin" and
preferences, so that sharing can be archived beyond the code level. We share
applications, generosely:

x� HTML pages can be copied to or shared by different websites without changes. All
client-dependent information including settings, content, authentication and resource
allocation are separated from the code (the CROFT and Scheme to be discussed
later).

x� Similar pages on the same website can use the same HTML codes without copy-and-
modify. The "template" page is simply reloaded with different contents or functions.

x� Object-orientedness with polymorphism is required to encapsulate business logics
and should be reused via an application-wide or system-wide common library.

1.3.3 Evolut ion Princ iple

Software is a living thing. Applications change to suit their environment and requirements.
Changes cause pain, especially among component interfaces. Some how, the structure
of position-independent name-value pair gives flexibility in interface design, because:

x� The caller is allowed to omit arguments, so that it will not fail when new arguments are
introduced. (The callee function will take the default for missing arguments.)

x� The caller can omit all arguments and let the callee function to find out from the
environment (e.g. the web form – This point was in OLDPAL. In BEE Script, form
variable is only one of many ways to pass arguments).

Future development of BEE will aim at distributed processing and in particular focus on
Web Services technology. Software components may run on remote machines and
common standards like XML and SOAP are being used across the net.

1.4 Characterising BEE

The architecture of BEE Script is characterised by the followings:

x� Pre-allocation of resources (CROFT – Customer Resource Online Facility Tables)
based on the URL of the web page: Resource handles are completely concealed from
the program code. This design simplifies the coding for finding and binding the
resources, and allows portability across servers and platforms. As no resources are
specified in the program code, different web pages can share the same piece of code
or template with absolutely no modification. (Please see "Virtual Page" for details.)

x� Security: Because the program code has no access to the resource handles, a web
page could never be able to access anything outside of its predefined Scope. Even if
an intruder with complete knowledge of the source code runs a modified script on the
same physical server, he or she would not be able to access the same resources
because the resources are allocated to the URL, not the page. The binding of
resources to the URL protects the web page from copy-modify-execute attacks.

BEE Script User Reference 4

x� Built-in multi-access-level authentication: Authentication settings and user data (login,
passwords and other attributes) are bound to the URL and are subject to the same
resource allocation protection under CROFT. The authentication process is
transparent to the program code, separating the role of the designer/developers and
the security administrators.

x� Rich functionality: full cross-platform SQL database support, asynchronous remote
function call, intrinsic support for e-mail generation, complete off-the-code program
parameters registry (the "scheme" class), automatic web administrator’s site, online
content editing and "Virtual Page" generation, to name a few.

x� Adaptive syntax: Dual form of coding (BEE Script and BEE Tag) makes it flexible to
mix with other web page constructs. Attribute Name-Value Pair syntax provides non-
positional parameter passing and makes the code robust and easy to extend.

x� Non-typed, multi-value and macro-style variable structure: All BEE Variables are
implemented in array. Value strings are evaluated recursively for BEE Variables (like
string macro substitution), allowing straightforward nested-addressing and simplifying
complicated symbolic referencing.

x� Well-defined variable hierarchy: The "class%name:element" structure provides a
three-tier hierarchy. "System Class" standardises variable usage and removes
ambiguity resulted from various programming styles. "Object Classes" provides an
object-oriented programming environment for function encapsulation.

x� User extendable command set: There are only few dozen intrinsic commands and
over half of them is common flow controls like declarations, conditionals, looping and
debugging. The rest are authentication, system control, database and specific
functions like mail and text control. Programmers can extend the functionality by
defining functions, BEE Conversions and objects, which use the same calling syntax
as the intrinsic features.

1.5 How BEE runs

BEE is built on three pillars:

1) CROFT for resource allocation, authentication and permanent settings

2) BEE Script/Tag Compiler

3) BEE Run-time Library

The web designer and programmer create the website and upload the web pages onto
the BEE enabled web server. The server upon receiving the web pages will scan for BEE
Script statements and convert them into BEE Tags. The web pages are then compiled
into the target implementation codes (PHP at the moment) and stored in the web storage.

BEE Script User Reference 5

At run-time, the implementation codes will be called on to perform the intended function of
the BEE commands. Most of these functions however are implemented as in the BEE
Run-time Library, which access CROFT implicitly if resources are required. That is the
resource will be identified and opened upon its first use.

1.6 What is a BEE Website

The common idea of a website is a name that starts with "www" and ends with "com" or
else with some dots in between, and when punched into the computer that name will bring
up a lot of potentially wonderful things. This vague definition is not sufficient for the sake of
technical discussion. We need a more specific definition of a website under the context of
the BEE technology.

A BEE Website is a collection of web pages running on BEE enabled web server or
servers. A BEE Website contains one or many BEE Web Paths and all web pages under
all such paths form the BEE Website.

Here is a summary of the hierarchy and the identifier in each level:

Constructs Has at least one Belongs to a Identified by

BEE Website BEE Web Path n/a Owner-Server Duple

BEE Web Path BEE Web Page BEE Website idURL

BEE Web Page n/a BEE Web Path URL starting with the
idURL of the BEE Web
Path after the protocol
specification (http://)

While Authentication (username/password logins) and scheme settings are bound to the
BEE Website, BEE Resources (e.g. database) are allocated at the BEE Web Path level.
In another word, the idURL defines a set of resources which all the web pages with URLs
derived from it have equal right to share.

An idURL starts with the full web server name without the protocol specification (http://).
The path after the server name is optional but if exists must be defined as a full path (e.g.
/abc/defx and /abc/defy must be defined as two separate idURLs, not just /abc/def).

Please note that a BEE Web Path can be a web page URL. In that case, there is only one
BEE Web Page under that BEE Web Path.

BEE Script User Reference 6

Theoretically, a BEE Website may contain BEE Web Paths under different web server
names (different "www....com" names). However, BEE Session variables are
implemented with cookies and therefore cannot be retain their values across pages on two
different web servers. For example, if a shopping cart is implemented with session
variables defined on a web page under one web server name, the cart content will not be
accessible from web pages under another web server name.

To simplify the language, when "website" or "site" is mentioned in this document, it means
BEE Website; "web path" or "path" means BEE Web Path and "web page" or "page"
means BEE Web Page, unless explicitly stated otherwise.

BEE Script User Reference 7

2 CROFT – Customer Resource Online Fac ilit y Tables

CROFT stands for Customer Resource Online Facility Tables. It consists of three parts:
Resource Allocation, Authentication and Scheme settings.

x� Resource Allocation is called Owner-Service internally. BEE Resources (mainly
database access) are allocated based on the URL of the web page. This design
serves two purposes: 1. programmers cannot access resources except for those
designated by the administrator to the web page’s URL, and 2. the same application
without any modification can run on different websites accessing different resources.

x� Auth is short for Authentication. Unlike in other scripting language that programmers
need to implement their own username/password encoding/decoding/matching, in
BEE, the entire user login mechanism is a native feature, and is administered by the
administrator (not by the programmer).

x� Scheme has two parts, the Application Scheme and Administration Scheme.
Application Scheme is for the application process to retrieve and save parameters. It
can be taken as persistent settings or data structure that the application codes
interpret. Administration Scheme on the other hand are not accessible by the code. It
is for the BEE Administrator to structure the website (e.g. to overwrite default
directories).

BEE is designed with a shared server in mind, typically in an environment of a service
bureau or web hosting company with many SME customers sharing the same physical
web server. Therefore, a two-tier structure that identifies the "owner" (the customer) and
its "service" (the website or online application) is built into the design concept of BEE.

A BEE Website is identified by a dual-key called the Owner-Service Duple. Authentication
and Scheme settings are site-wide. That is, if you can login to a page, you can login to
any pages of the website. If a scheme setting is applied to a page, it applies to all pages
of the website. (There is nothing to stop you from using the same settings for multiple
sites, for example, to share the same password file. Even so, we still need separate
Owner-Service Duple because otherwise, the two sites will become one.)

Resources such as database access right are bound to BEE Web Path (or BEE Web
Page if the idURL is a page address), as described in the following.

2.1 Resource Allocation

All database specific information is kept in CROFT separating from the program code. A
Database Access Specification (DAS) contains information for the BEE system to gain
access to the data, parameters like Database Type, Database Host, Database Name, and
the Username and password. This information is stored within CROFT and can be
uniquely identified by the idURL and an identifier called DBID.

For example:

BEE Script User Reference 8

idURL DAS: Database Name – Database Type

www.mywebsite.com Marketing – MySQL database
www.mywebsite.com/order.htm Ordering – Microsoft access database
www.mywebsite.com/checkacct Accounting – Oracle database
www.mywebsite.com/checkacct/news Marketing – MySQL database

If a page can be derived from multiple idURL, the longer one will be used to identify the
DAS. For example, http://www.mywebsite.com.au/checkacct/billing.htm can be derived
from idURL www.mywebsite.com or www.mywebsite.com/checkacct. In that case, the
longer one (www.mywebsite.com/checkacct) will prevail. i.e. the billing.htm page will
access the Oracle database "Accounting" (not the MySQL database "Marketing").

In the actual coding, there is no preparation of a database access. You simply launch a
"database" BEE Command with the SQL query and/or some other parameters, CROFT
will then automatically find the corresponding database on the host specified by the DAS,
open it with the DAS username and password through the mechanism of the specified
type, and the result is passed back via a database result variable. This simplifies the web
page coding to a single command, and makes it portable across platform.

In rare occasions (usually when combining results from heterogeneous systems) which
needs to access several DASes in one single page, you can use the DBID identifier to
uniquely identified the DAS for the SQL.

For example:
http://www.mywebsite.com/newsheadline.htm DBID= database – advertising
http://www.mywebsite.com/newsheadline.htm DBID=world database – worldnews
http://www.mywebsite.com/newsheadline.htm DBID=sports database – sportsnews

The DBID is only an identifier and is not related to the name of the database or server
parameters. Therefore, specifying the DBID in the program code does not make it any
less platform-independent or more difficult to port across platform. The code is still
separated from the knowledge of the DAS even with DBID.

2.2 Authenticat ion

When a visitor login to a website by providing a username and password, all the web page
program needs to do to authenticate the user is one single command: "login". CROFT will
automatically search for the Owner-Service Duple by matching the longest idURL with the
URL of the web page. Then use the found Owner-Service Duple to look up the
Authentication Mechanism Specification (AMS) with the Owner-Server Duple to find the
user table for a password check.

An AMS contains the user table name and its database access specification such as the
type, host, database and table name (similar to DAS previously mentioned). The AMS
also contains the password encryption method, the Administrator Access Level, and a
mapping of the six essential fields: UserName, Password, Realm, AccessLevel, Active
and Expiry.

BEE Script User Reference 9

The field names of the six essential fields in the user table needs to be entered into their
corresponding AMS mapping field, unless their names are exactly as the default
(UserName, Password, Realm, AccessLevel, Active and Expiry). If a field is missing from
the user table, a value needs to be entered in the AMS mapping field with a leading ’#’ to
tell CROFT to use the value for that field instead of retrieving it from the user table.

A username acceptable by the BEE Website is in the format of either username (e.g. john)
or username@realm (e.g. john@warehouse). This allows the web application to group
users into different name spaces or use different user tables (identified by the realm), even
one from another "friendly" website. (Please see Affiliate access level in the BEE Variable
section under "sys" class.)

Upon authentication, the system will first find the Owner-Service Duple by matching the
longest idURL as described before. Secondly, the AMS is identified using the Owner-
Service Duple and the "realm" specification in the "username" parameter (either passed in
through the @ suffix of the username, or as a separate parameter. If not found, the "*"
realm will be used (wild-card realm).

Once the AMS is identified, the system will access the user table based on the information
in the AMS. The user record will be identified by the username and the realm field if the
Realm field mapping exists. (The Realm field is a field in the user table that indicates the
Realm that the user belongs to. You can have different realms in different user tables, or
one user table for different Realms identified in the realm field of the user table.)

One important point to note about using "realm": You must specify the "RealmField"
explicitly in the AMS and specify "*" in "Realm" in order to make use of "realm" in the
authentication process. Simply adding a field called Realm in your user record would not
make it effective.

Next, the password obtained from the user record will be matched based on the
encryption mechanism specified in the AMS.

If the user login is successful (password match), then all the fields in the user record will be
loaded into the sys%auth array, which may contains site specific attributes like
sys%auth:Name, sys%auth:Tel, sys%auth:TaxCode, etc.

2.3 Scheme

There are two "scheme" setting mechanisms in BEE. One is for programmers for keeping
application settings, and will be discussed in the "scheme" class. Another is used
internally by CROFT to control the operation of the website.

Scheme in CROFT is for permanent system settings, usually to identify directories in the
BEE Hosting Server. The CROFT Scheme settings are set up by the BEE Hosting
Administrator, and is not accessible from the program code. Settings for the application
program should be put under the scheme class. (Please see BEE Variable under
scheme%.)

BEE Script User Reference 10

The reason that we need similar mechanism in CROFT is that some settings are required
even before the scheme class is initialised, e.g. the setting of the name of the scheme
directory itself. Also, CROFT Scheme settings can only be changed by the BEE Hosting
Administrator, making the CROFT Scheme ideal for security system settings.

Most of the CROFT Scheme settings have a default value and a CROFT Scheme entry is
required only if the value is different from the default (e.g. if you want to put the VirtualBase
directory to be somewhere else.)

BEE Script User Reference 11

3 BEE Variables

BEE Variables are simple but powerful. They are simple because there is only one data
structure – array. No pointers and data type constraints, everything is purely string
macros.

For example, after var abc = "myvalue";, variable abc contains the literal "myvalue".
Then after we do var xyz = "abc";, we got xyz containing "abc" and {xyz} containing
"myvalue". Now we create an array out of thin air (as it's already there): var abc:april
= "fool"; var abc:may = "flower";, then {abc|list} will give
"''=>'myvalue','april'=>'fool','may'=>'flower'", and so will {{xyz}|list} because {xyz}
evaluates to abc, and {{xyz}|list} evaluates to {abc|list}. We've just changed the language
from "containing" to "evaluating". Now you got the idea. (Please note that "list" used in
the above example is called a BEE Conversion to convert an array into a displayable
string.)

Curly bracketed variables always evaluate to a string. To specify the variable as a whole
with all its array elements, you need to use the (var) cast.

In the following sample code, the comment lines (the ones starting with "//") indicate the
possible evaluations, where the arrow "->" means "evaluates to".

var abc = "myvalue";
 // {abc} -> myvalue
 // {abc:} -> myvalue
var xyz = "abc";
 // {xyz} -> abc
 // {{xyz}} -> {abc} -> myvalue
var abc:april = "fool";
 // {abc:april} -> fool
var abc:may = "flower";
 // {abc:may} -> flower
 // {abc|list} -> ’’=>’myvalue’,’april’=>’fool’,’may’=>’flower’
 // {{xyz}|list} -> {abc|list} -> (ditto)
var yourval = "{abc}";
 // {yourval} -> {yourval:} -> myvalue
 // {yourval|list} -> =>myvalue
var def = (var)abc;
 // {def} -> {def:} -> myvalue
 // {def|list} -> =>myvalue,april=>fool,may=>flower

Please note that the double quotation marks surrounding the values (the right-hand-side of
the assignment) are optional, and can be replaced by single quotation marks. If there is
no spaces in the value string, the quotation marks can be omitted altogether.

3.1 BEE Variable Name

This is the general form of a BEE Variable Name:

[class%][file&]name[:[#]element]

BEE Script User Reference 12

Note 1: The File Specifier ’file&’ is considered part of name and is for "scheme", "file" and
"upload" classes only.

Note 2: The element positioner ’#’ before element is used to address the element by
position in the array (e.g. #2 for the 3rd element). (Without the element positioner, element
will be an alphanumeric index.) Accessing with the positioner (even reading) will
automatically extend the array if necessary to reach that position. e.g. If array "a" has only
3 elements, display "{a:#8}"; or even if ({a:#8|isset}) ... will extend the array "a" to have 9
elements, with 6 null elements appended after this original three.

The three-tier hierarchy of class-name-element is central to the BEE Variable architecture.

Class indicates the type of the variable and often implies the usage and operations of it.
(The meaning of "class" is different from that in the Object-Oriented context. In OO, class
is a template of the object; In BEE, "class" is the object. For details, please see Chapter
"Classes and Objects")

Name is the name of the variable. BEE Variables are in fact arrays. A single-value scalar
variable is in fact the array element with the blank index, which is called the default
element.

Element is the index to the BEE Variable array. If the Element part of a BEE Variable
name is omitted, it will be evaluated to either the whole array (class%name) or just the
default element (the one with the blank index – class%name:), depending on the context
(e.g. based on the BEE Conversion, the assignment target, the Class it belongs to, or
explicit specification.)

3.1.1 General Classes (Object Classes)

The concept of "class" is closely related to the one of "object". However, in BEE, the
terms "class" and "object" are used interchangeably. They both mean a "super variable"
that holds multiple array variables (like a two-dimensional variable).

General Classes are used as common variables. They are only accessible within the local
context (e.g. inside the function they are defined) unless declared as "global" or "parent".

Variables that does not have a class part (class%) in their name belongs to the general
class "value". That is why "value%" is commonly omitted to increase readability.

When a General Class is used as an object (created by a constructor using the "new"
syntax), it is called an Object Class. The two do not have any semantic differences.

3.1.2 Spec ial Classes

These are classes that operate in exactly the same way as General Classes. What
"special" about "Special Classes" is that they are used by the system to store values used
to communicate with the application.

These classes are:

BEE Script User Reference 13

arg Value already passed into the function’s Context

message Text error message returned from a function or command
(The name part is the function name and therefore is case insensitive.)

param Value to be passed into a function or command; cleared automatically after
the function call.
(The name part is the function name and therefore is case insensitive.
However, the Element part is the argument name and is case sensitive. If an
argument is passed via the function calling line, BEE will convert all argument
names to lowercase. The param% class provides a way to pass non-
lowercase argument name to a function.)

result Value passed out from a function or command
(The name part is the function name and therefore is case insensitive.)

status Numeric error code returned from a function or command
(The name part is the function name and therefore is case insensitive.)

systemp Temporary values used by the system. (Please do not use this class.)

arg is an argument available from within a user-defined function. It is in the form of
arg%function:argname and is equivalent to the ones on the argument list of the user-
defined function. However, it is recommended to access function arguments via
arg%argname for array access and case insensitive argument name (argname is
always in lowercase from within the function).

arg%arg refers to the "default" argument, which is the one without an argument name.
e.g. fn "def"; will see "def" in arg%arg from inside the function.

Please note that param% is prepared by the caller before calling the function, and
arg% is used from within the callee function to retrieve the passed in values.

message is a string (or error message) a BEE Command passes out. It is blank unless
there is an error. It is usually in the form of message%tagname. (message%tagname
usually does not take an array.)

param is a value to be passed into a BEE Command or user-defined function. It is in the
form of param%function:argument and is equivalent to the ones on the argument list
of the tag or function. Explicitly set "param" take precedence over the ones on the
argument list. Array can be passed in via the array type (e.g. "(array)..."). Please note
that param% is prepared by the caller before calling the function, and arg% is used
from within the callee function to retrieve the passed in values.

result is a value made available as a result of a BEE Command operation. It is usually in
the form of result%tagname, and therefore can store an array.

status is a number (or error code) a BEE Command passes out. It is zero unless there is
an error. It is usually in the form of status%tagname (status%tagname usually does
not take an array.)

systemp is a temporary variable used by the system. Please do not use this class.

BEE Script User Reference 14

3.1.3 System Classes

The following classes are used by the system. They are globally accessible and their
operations are governed by the system in a restrictive way. For example, some are read-
only and some can not be accessed as an array etc:

Class Get Set Clear Array access file& acceptable

class Yes No No No No

const Yes No No No No

cookie Yes Yes Yes Yes No

debug Yes Yes No No No

file Yes "text" and
"action" only

"text" only Yes Yes

form Yes Yes Yes Yes No

function Yes No No No No

scheme Yes Yes Yes Yes Yes

session Yes Yes Yes Yes No

sys Yes some only some only some only No

text Yes Yes No Yes Yes

upload Yes "saveas" only No No Yes

class is for properties of user-defined classes. It is read-only.

Variable Value/meaning Access

class%className
(className is not "list")

An array of variable names in the class
className. This is a "virtual" array
and access to individual elements is
not allowed. e.g. you cannot use
class%myclass:#0 to access the first
element of thg class%myclass array.

However, you can "foreach" the
variable or assign it to another variable

get
(array only)

BEE Script User Reference 15

for access to its elements.

class%className:varcount The number of variables in className get

class%className:varlist A comma-delimited list of variable
names in the class className.

get

class%className:list Same as class%className:varlist get

class%list:className Same as class%className:varlist get

class%list An array of all class names in the
context. It is a "virtual" array (like
class%className, no access to
individual ones is allowed.)

get
(array only)

const is internal constant for some special functions. It is read-only.

Variable Value/meaning Access

const%socket:constant Constants related to socket operation.
They include:
AF_INET
AF_UNIX
SOCK_STREAM
SOCK_DGRAM
SOCK_SEQPACKET
SOCK_RAW
SOCK_RDM

get

const%mail:HTML_HEADER For the "header" parameter in the
"mailto" command to turn the message
into HTML format.

get

const%true
const%false

A boolean value of "true"
A boolean value of "false"

get

cookie is a persistent value that can be kept on the client’s machine across multiple client
sessions. You can set an expiry time on a cookie so its value will persist until the time
is up, regardless of whether the user has closed the browser or not.

Variable Value/meaning Access

cookie%name:

or cookie%name:value

The value of the cookie being stored in
the client’s machine for later retrieval.
(Although cookie values are supposed
to be encoded, this is done implicitly in
the system so you are free to use even
white-spaces, semi-colon and comma.

Accessing the "value" element of
cookie%name will trigger the cookie
operation. (Other cookie elements are
no more than those of an "ordinary"
class, except that their values are used

get
set

BEE Script User Reference 16

in the cookie operation when the
"value" element is being accessed).

You can only set or clear a cookie’s
value before the first display (even
before the <html> tag). Also, the
change does not take effect until after
the page run. (For the very page run,
you need to refer to the source of the
new value direct.)

cookie%name:expire The expiry time (on the client’s
machine) in timestamp format
(seconds since 1 Jan, 1970 GMT)

get
set

cookie%name:path
cookie%name:domain
cookie%name:secure

The "path" parameter of the cookie
The "domain" parameter of the cookie
non-zero if SSL is required

get
set

"session" class is implemented with a cookie internally but the "session" class and the
"cookie" class are completely independent. They only happen to be implemented by
a common technology called "cookie".

debug is for accessing the online debugger information. It is read-only.

Variable Value/meaning Access

debug%active The debug functions will be active only
if debug%active is set to non-zero.
Default is 1.

This variable is usually used to turn off
all debug features in one go. (The
operation will speed up marginally.)

get(no array)
set(no array)

debug%display The string set to this variable will be
displayed on the current debug
window.

get(no array)
set(no array)

debug%file
debug%file:name

debug%line
debug%line:number

The name of the current script file

The line number of the command
currently being executed.

get(no array)

debug%function:time If set to n, the execution time of the
function down to nth level will be
displayed upon its return. Default is 0.

get(no array)
set(no array)

debug%trace If set to non-zero, display [file:line]
before executing a line. Default is 0.

get(no array)
set(no array)

debug%trace:function
debug%trace:functions

Comma-delimited list of actual function
names of functions only in which the
debug%trace setting will be effective.

Setting debug%trace:function to blank

get(no array)
set(no array)
clear(no array)

BEE Script User Reference 17

means to trace the main program only.
If debug%trace:function is not set (or
cleared), all lines will be traced.

debug%trace:showfunction If set to non-zero with debug%trace,
show [file:line-actual_function_name].
Default is 0.

get(no array)
set(no array)

debug%trace:showinfo If set to non-zero with debug%trace,
show more information (e.g. the BEE
command). Default is 0.

get(no array)
set(no array)

debug%trace:showtime If set to non-zero with debug%trace,
show HH:MM:SS:[file:line]. Default is
0.

get(no array)
set(no array)

debug%trace:count
debug%trace:maxline
debug%trace:maxlines

If set to a positive number,
debug%trace will automatically
switched off after the specified number
of lines have been traced. Default is
null, which means not to switch off
debug%trace until explicitly done (i.e.
set to 0.)

get(no array)
set(no array)

debug%trap[:file:line] If set to a positive number, the
operation will stop before the
"number"th time executing the line
specified as file:line. If debug%watch
is set, the "watched" value will be
displayed before the operation stops.

If file: part is not specified, the
operation will stop before that line
regardless of the file being in.

If both file and line is not specified, the
trap will apply to every line. e.g.
setting debug%trap to 10 will cause
the operation to execute 9 more lines
and stop before the 10th. Setting
debug%trap to 1 will stop the operation
before executing the next line.

get(no array)
set(no array)

debug%trapfunction[:file:line] If set to a function name, when the
operation is trapped at file:line the
specified function will be executed
before the operation stops. (The
debug%trapfunction and debug%trap
of the same element index (the
:file:line part) always come together.)

The trap-function will be given the
context of the trap point so that it can
show or even reprocess any variables
upon the trap. (Yes, the trap-function
may "pollute the environment".)

The trap-function may resume the

get(no array)
set(no array)

BEE Script User Reference 18

trapped operation by assigning a
positive integer to
"debug%trapresume". Upon returning,
the system will re-initialise the "trap
count" (the debug%trap[:file:line]
variable) by the value of
"debug%trapresume".

Note: debug%active is set to 0 (all
debug features off) before the trap-
function is entered. If you want the
debug features to be active again after
resuming, please set debug%active to
1 before returning.

debug%trapresume To be set by the "trapfunction".

If set to a positive integer, the
operation will resume upon the return
of the trapfunction, with the "trap
count" for that trap point re-initialised to
that positive integer.

If not set or set to a non-positive
integer, the operation will stop upon
the return of the trapfunction.

get(no array)
set(no array)

debug%watch[:file:line] Comma-delimited list of values to
show before executing the line
specified as file:line.

If file: part is not specified, the values
will be displayed on that line
regardless of the file being in.

If both file and line is not specified, the
values will be displayed whenever a
line is "traced".

Note: The values are interpreted under
the local context. Please use absolute
attribute to avoid pre-evaluation:
var debug%watch:file:line =! ...

get(no array)
set(no array)

debug%watchformat The format of the "watch" with the
name represented by @name and
value by @value. Default is
[@name=@value].

get(no array)
set(no array)

debug%window The name of the debug window that
you want the debug message to
display in.

The debug window will be opened at
the time of setting debug%window
regardless of debug%active, but no
message will be displayed until debug
features are set and enabled.

get(no array)
set(no array)

BEE Script User Reference 19

The debug window will remain open
until it is closed manually.

Default is blank (the same browser
window of the web page.)

debug%window:display Same as debug%display get(no array)
set(no array)

file is contains information about files in your directory. The "name" part of a file class
variable is taken as the name of a file under the FileDir – {sys%croft:filedir}. You may
specify files under the CROFT directories (those specified in {sys%croft:wwwdir},
{sys%croft:textdir}, {sys%croft:schemedir} and {sys%croft:vbdir}), but in this case you
need to specify them in full path (e.g. file%{sys%croft:wwwdir}/images/logo.gif&size}).

Variable Value/meaning Access

file%file&name
file%file&basename
file%file&dirname
file%file&size
file%file&mimetype
file%file&atime
file%file&ctime
file%file&mtime
file%file&exists
file%file&readable
file%file&writable
file%file&isdir
file%file&isfile
file%file&islink
file%file&content
file%file&contents

The name of the file
The file name without directory path
The directory name of the file
The file size in bytes
The MIME content type of the file
The last access time of the file
The last inode change time of the file
The last modification time of the file
1 if the file exists, or 0 if otherwise
1 if the file is readable, or 0 if otherwise
1 if the file is writable, or 0 if otherwise
1 if file is a directory, or 0 if otherwise
1 if file is a file, or 0 if otherwise
1 if file is a link, or 0 if otherwise
The content of the file in a string
Same as file%file&content

get

file%file&text
or
file%file

The array that holds all the text lines in
the file, indexed numerically starting
from 0 (the first line is file%file&text:0
or file%file:0).

If file is a directory, the array contains a
list of file names in that directory in
"natural" orders returned from the
operating system.

The text lines are held in cache. Once
accessed, it will be available even if
the file is renamed or even deleted.

get

file%file&action:copy Copy the file named by the variable to
the file named by the set value
(file%fromfile&action:copy = "{tofile}";
The {tofile} is in FileDir –
{sys%croft:filedir}, or
{sys%croft:wwwdir} or
{sys%croft:textdir} provided the full

set

BEE Script User Reference 20

path is specified.)

file%file&action:delete Delete the file unless the value is set to
zero or blank

set

file%file&action:existence Delete the file if the value is set to zero
or blank.

Note: file%file&action:existence is the
opposite of file%file&action:delete.

set

file%file&action:rename
file%file&action:name

Rename the file to the new name in
the set value
(file%oldname&action:rename =
"{newname}"; The {newname} is in
FileDir – {sys%croft:filedir}, or
{sys%croft:wwwdir} or
{sys%croft:textdir} provided the full
path is specified.)

set

file%file&action:source Copy the file named by the set value to
the file named by the variable
 (file%tofile&property:source =
"{fromfile}";)

Note: file%file&action:source is the
same as file%file&action:copy, except
that the direction of the copying is
reversed. The set value of the former
is the "fromfile", while that of the later is
the "tofile". (The {tofile} is in FileDir –
{sys%croft:filedir}, or
{sys%croft:wwwdir} or
{sys%croft:textdir} provided the full
path is specified.)

set

file%file&action:write Write the lines in file%file&text up to
the number of characters specified in
the set value (0 or non-numeric for all).

Note: file%file&text is held in cache.
Nothing will be written to the actual file
while the variable is being built up, until
the write action.

set

file%file&action:append Same as file%file&action:write, except
that the number of characters specified
are appended to the end of the file,
instead of from the beginning.

set

Note: Accessing file%file&text multiple times (e.g. in a loop) does NOT incur overhead
of file opening, seeking and closing. The whole file is loaded into the variable upon
the first access of file%file%text. Subsequent accesses are directly from the variable
itself. (PHP underlying the BEE system handles variable memory in a neat and
efficient way.) Operations on file% variables will set status%file:filename and
status%message:filename accordingly.

BEE Script User Reference 21

form is a value passed in via the URL argument list (GET) or a form submission (POST).
For single-value Form variables, form%name is the same as sys%form:name. But for
multiple-value Form variables, you can only access them via form%name.

Form variables can be set and cleared. That means you can modify the form
submission values or even create somes to simulate a form submission.

Please note that all form% values (and sys%form values) are subject to automatic
"washval" conversion before returning the value to avoid attack via online forms. To
turn this feature off, set scheme%WashForm to only a comma (","). Optionally, you
may turn off WashForm for a particular access level and above.

 For example, if scheme%WashForm:editor being "," will turn off "washval" for forms if
the current login has editor privilege or higher. This is useful if you allow BEE Values
in editable content.

function is for properties of user-defined functions. It is read-only.

Variable Value/meaning Access

function%funcName:exists
function%funcName:exist

1 if the function exists, or 0 if otherwise
Same as function%funcName&exists

get

BEE Script User Reference 22

scheme is a setting for the website. It is saved to the website permanently until changed.
It is usually used to specify constant settings which is referenced from the program
code. Scheme values are loaded into the client session when it starts. Any changes
to scheme values only affect the current session, and they will be all discarded after
the session finish (e.g. browser close).

Scheme values can be explicitly reloaded (via "scheme reload") and saved (via
"scheme save"). Once saved, the scheme values will be stored with the website.
However, other sessions will not pick up the changes unless the reload the scheme.

If file& (except for "list&") is specified after scheme%, the settings in the specified
scheme file will be used instead of the common site scheme file. In this case, the
changes will be reloaded every time they are used, and saved immediately upon
changes (which means all sessions will pick up the changes.)

There is a special scheme operation: "scheme%file&" without the name part. This
itself returns a list of names in the scheme files. In addition, it has a "side-effect" of
loading all scheme values in the scheme file into "file%name:element". That way, you
can load the whole scheme file into a class under the Context in one go. e.g. "var
scheme%file&;". (file must not be "list".)

There is yet another special scheme variable: "scheme%list&name". This array
contains the list of all scheme files under the scheme subdirectory name. If name is
missing, it will show all scheme files under the scheme directory itself.

General scheme settings (scheme%name) are usually used for common settings that
require fast access and local update. Specific scheme files (scheme%file&name) are
usually used to hold design parameters that require little or no updates, to simplify the
coding. For example, you can store form field attributes and validation criteria into
scheme files for the program to interpret while displaying a form. To reserve scheme
name space, some applications create scheme subdirectory for its own scheme files
(e.g. DRB use scheme%drb/...&... for its scheme files).

Operations on scheme% variables will set status%scheme and message%scheme
accordingly.

BEE Script User Reference 23

session is a persistent value kept through out the client session. A client session is the
period starting from the website first being accessed by a particular browser run, until
that browser instance closes.

A session is implemented by a 128-bit session key stored at the client browser as a
cookie. The session context is stored at the server side and therefore is secured from
client-side hacking. The server uses the session key cookie from the client to
determine which session context to load. A client cannot tap into a session unless it
has the knowledge of the 128-bit key of the targeted session, which is virtually
impossible.

Please note that Login and logout do not start and finish a session, even though it can
be programmed to have all session variables erased and scheme settings reloaded
upon logout to effectively simulate a new session.

sys (mostly read-only) is system data such as authentication attributes and site
information.

Variable Value/meaning Access

sys%accesslevelnames:0
sys%accesslevelnames:1
sys%accesslevelnames:2
sys%accesslevelnames:3
sys%accesslevelnames:6
sys%accesslevelnames:8
sys%accesslevelnames:10

Public: not logged in
Affiliate: authenticated at "friendly" site
Member: logged in
VIP: logged in with privilege
Editor: logged in as editor
Manager: logged in as manager
Admin: administrator login
(See "access" command for details.)

get

sys%accesslevelnames:Public
sys%accesslevelnames:Affiliate
sys%accesslevelnames:Member
sys%accesslevelnames:VIP
sys%accesslevelnames:Editor
sys%accesslevelnames:Manager
sys%accesslevelnames:Admin

0
1
2
3
6
8
10

get

sys%argv The argv variable when running in
command line mode

get

sys%auth:username
sys%auth:realm
sys%auth:accesslevel
sys%auth:user

Username logged in
Realm logged in
Access level number
Same as "sys%auth:username"

get
set (only if
AllowSetAuth
CROFT
Scheme is set

sys%auth:loginname
sys%auth:accesslevelname

username@realm
Access level name

get

sys%auth:attr User attribute (e.g. Name, Tel) get
set (but not
saved until
"auth save")
clear

sys%client:agent
sys%client:ip

Browser type
Client machine IP

get(no array)

BEE Script User Reference 24

sys%client:ip
sys%client:hostname
sys%client:host
sys%client:referrer

Client machine IP
Client machine name
Same as sys%client:hostname
Referring page URL

sys%context The identifier of the current variable
context. This value is useful in passing
a local context to other scopes via the
"link" command.

get(no array)

sys%croft:hostid
sys%croft:owner
sys%croft:service
sys%croft:webserver
sys%croft:webpath
sys%croft:dbid
sys%croft:dbtype
sys%croft:dbhost
sys%croft:dbname
sys%croft:sitedir
sys%croft:wwwdir
sys%croft:filedir
sys%croft:schemedir
sys%croft:textdir
sys%croft:vbdir

Host ID of the web hosting server
Owner Code of the website
Service Code of the website
Server Name
Path where the Scope is defined
Database ID
Database Type
Database Host
Database Name
Site Directory
WWW (Web) Directory
File Directory
Scheme Directory
Text Directory
VB (VirtualBase) Directory

get

sys%croftauth:dbtype
sys%croftauth:dbhost
sys%croftauth:dbname
sys%croftauth:dbtable
sys%croftauth:passwordtype
sys%croftauth:adminaccesslevel
sys%croftauth:dbusername
sys%croftauth:dbpassword
sys%croftauth:usernamefield
sys%croftauth:passwordfield
sys%croftauth:realmfield
sys%croftauth:accesslevelfield
sys%croftauth:activefield
sys%croftauth:expiryfield

Database Type of Auth
Database Host of Auth
Database Name of Auth
Database Table of Auth
Password Type used in Auth
The minimum level considered admin
Database Username to Auth
Database Password to Auth
Field name of Username in Auth
Field name of Password in Auth
Field name of Realm in Auth
Field name of Access Level in Auth
Field name of Active in Auth
Field name of Expiry in Auth

get

sys%default:textfile The default text-file value for "text
name" in the "text" command

get
set

sys%form:name Value submitted from a form (same as
form%name except that form%name
can have multiple values) (See
"form%" about "washval" security.)

get
set
clear

sys%formescaped Return 1 if the form variable submitted
with ’\’ escaped ’\\’ (PHP 4 behaviour),
or 0 otherwise.

get(no array)

sys%header HTTP Header set(no array)

sys%https Return 1 if HTTPS is on or 0
otherwise.

get(no array)

BEE Script User Reference 25

sys%ineditor Return 1 if the page is running in the
text editor, or 0 otherwise.

get(no array)

sys%ini:name Return the "ini" variable named by
name (as defined in the "ini.php" file).

get(no array)

sys%isssl Same as "sys%https" get(no array)

sys%mimetype:file MIME Content Type of the specified
file, or the current page if no file is
specified. (file is in FileDir –
{sys%croft:filedir}, or a CROFT
directories provided the full path is
specified.)

set(no array)

sys%output:content
sys%output:length

The content of the output buffer
The current length of the output buffer

get(no array)

sys%php:name The PHP variable indexed by name in
$HTTP_SERVER_VARS (PHP 4) or
$_SERVER (PHP 5)

get

sys%phpversion The PHP Version that BEE is running
on.

get(no array)

sys%random:n A randomnumber between 1 and n get(no array)

sys%randomnumber:n Same as "sys%random:n" get(no array)

sys%post:data
sys%post:type
sys%post:charset
sys%post:host
sys%post:mimetype
sys%post:contenttype

Data posted
Content Type of the data posted
Character Set of the data posted
Host posted to
Same as "sys%post:type"
Same as "sys%post:type"

get(no array)

sys%password:old
sys%password:new

The old password and new password
in a password changing operation.
This is set-only and can only assigned
an array with two elements: "old" and
"new". The operation will set
status%auth:password and
message%auth:password accordingly.

set array
only

sys%self Same as "sys%urlpart:pathpage" get(no array)

sys%scheme:linelastgot The line number of the last read
scheme item in the scheme file. (For
array items, the line number of the first
element will return.)

get

sys%scheme:linenextset The line number of the next scheme
item to set in the scheme file. (This
value affect only the next set-scheme
operation only. If the operation is
setting an existing item, this value will
be ignored. After the operation
(regardless the value is ignored or
not), it will be reset to zero – which

get
set

BEE Script User Reference 26

means new items are set at the end of
the file.)

sys%session:id
sys%session:idlesince

The 128-bit Session ID in hexadecimal
The time (in timestamp format) last
authentication feature is accessed

get(no array)

sys%session:idletimeout

sys%session:expiry

sys%session:expire
sys%session:realmchar

If set to non-zero, it indicates the
number of seconds in which the
session will be automatically logged
out unless an authentication feature
(e.g. going into a member only page)
is accessed.
The time (in timestamp format) by
when the session will be automatically
logged out.
Same as "sys%session:expiry"
The "Realm Character" (usually ’@’).

get(no array)
set(no array)

sys%site:name
sys%site:url

The site name (scheme%SiteName)
The idURL (can be overwritten by
scheme%SiteURL)

get(no array)

sys%stdin The input stream from begin to end get(no array)

sys%textpagelist The list of all pages with TEA (Text
Edit Area). This always returns an
array of which each item is in
path/page format (with no leading ’/’).
If :element is specified, the result will
always be blank.

get-
always array

sys%time:

sys%time:sec
sys%time:second
sys%time:seconds

sys%time:usec
sys%time:microsecond
sys%time:microseconds

sys%time:secusec

sys%time:zoneoffset

The current time in number of second
since 1 Jan, 1970 (GMT). (This is the
default for any unrecognised element.)

Same as sys%time:

The "microsecond" (millionth second)
part of the system clock.

The "microseconds" since 1 Jan, 1970
(GST).

Time Zone offset in second (e.g.
Sydney standard time is GMT+10, the
offset is 36000 seconds)

get(no array)

sys%url:protocol
sys%url:server
sys%url:path
sys%url:page
sys%url:full

The current URL and its parts:
http:// (or https://, same for below)
http://mysite.com
http://mysite.com/sub/dir
http://mysite.com/sub/dir/mypage.htm
http://mysite.com/sub/dir/mypage.htm?

get(no array)

BEE Script User Reference 27

sys%urlssl:server
sys%urlssl:path
sys%urlssl:page
sys%urlssl:full

sys%urlpart:server
sys%urlpart:path
sys%urlpart:page
sys%urlpart:pathpage
sys%urlpart:pathpageargs

sys%urlpart:args
sys%urlpart:full

abc=123&xyz=How+are+you
https://mysite.com
https://mysite.com/sub/dir
https://mysite.com/sub/dir/mypage.htm
https://mysite.com/sub/dir/mypage.htm?
abc=123&xyz=How+are+you
mysite.com
/sub/dir
mypage.htm
/sub/dir/mypage.htm
/sub/dir/mypage.htm?
abc=123&xyz=How+are+you
abc=123&xyz=How+are+you
http://mysite.com/sub/dir/mypage.htm?
abc=123&xyz=How+are+you

sys%urlredirect:pathpage
sys%urlredirect:pathpageargs
sys%urlredirect:args

The corresponding values of
sys%urlpart for a redirected page (403
or 404 http server redirect)

get(no array)

sys%urlshown:pathpage sys%urlredirect:pathpage if the page is
redirected, or sys%urlpart:pathpage if
otherwise.

get(no array)

sys%washform The current "WashForm" settings. i.e.
the scheme%WashForm:accesslevel
value being applied to the current
session.

get(no array)

text is an editable web page content. It is saved to the website permanently until
changed. The value in a "text" class variable is used by the "text" command to display
the web page content. If the visitor got Administrator access, an Edit Text icon will
appear at the end of the text, which will click into the Text Edit Screen for online
update. The new content will be saved into the "text" class variable.

All these are done by the "text" command without accessing the "text" variable. You
usually access a "text" variable only if you want to process the content for some
reason. In the "text" command, only the name:item part of the variable needs to be
specified.

Each web page got a "text" class of its own, to nicely separate text contents from each
other. If you want to refer to "text" variables for another page, you can use the file&
part of the variable (e.g. text%/products/index.htm&headline).

There is a special scheme operation: "text%" without the name part. This itself returns
a list of names in the "text" class. In addition, it has a "side-effect" of loading all "text"
values in the scheme file into "page%name:element". That way, you can load all
"text" class variables into a class (e.g. /product/index.htm%) under the Context in one
go. e.g. "var text%page&;".

upload contains information about file or files uploaded via the client browser.

BEE Script User Reference 28

Variable Value/meaning Access

upload%[index&]name:name
upload%[index&]name:type
upload%[index&]name:size
upload%[index&]name:uploaded

The name of the uploaded file
The type of the uploaded file
The size of the uploaded file
non-zero if the file has been uploaded

get

upload%[index&]name:saveas The name of the file to be saved on
the server side. Uploaded files are
held only temporarily until the end of
the page run. To "actualise" the
uploaded file, the "saveas" element
must be set to a valid server file name
(which is in FileDir – {sys%croft:filedir},
or {sys%croft:wwwdir} or
{sys%croft:textdir} provided the full
path is specified).

get
set

Note: index& is used only for array input (e.g. <input type=file name="clientfile[]">).
The first file is represented as "upload%0&clientfile" and the second
"upload%1&clientfile" and so on.

A typical upload form is like:

<form method=post enctype="multipart/form-data" action="save.htm">
<input type=file name="clientfile">
<input type=submit value=Upload>
</form>

In the above example, "save.htm" will do var upload%clientfile:saveas = "serverfile"; to
save the uploaded file into "serverfile" on the server storage. The status of the
"saveas" operation is in variables status%upload and message%upload.

3.2 BEE Variable Value

There are only one data structure in BEE Value – array of strings. This is the general form
of a BEE Value:

{[#|@][class%][file&]name[:[#]element][=value][|conv[:arg[,...]]]}

Note 1: You can add a leading '$' to make a "naked" Value, which can be used outside of
the Context (i.e. in other scripts or the HTML scope or attributes). For example, in the
scope of the HTML Text: Click here: ${myCaption}

Note 2: With the optional sizeof operator (the '#' sign right after the open curly bracket), the
BEE Value will evaluate to the length of the evaluated string or the number of elements in
an array. (Please see Example 3.)

Note 3: With the optional keyof indicator (the '@' sign right after the open curly bracket),
the BEE Value will evaluate to the key of the elements in an array. This looks trivial as the
element name is itself the key. However, it is useful to get the key from a positional
element. e.g. {@pet:#2} will evaluate to the key of the third element (first one is #0).

BEE Script User Reference 29

Note 4: If the optional value is specified (prefixed by ’=’), it will be assigned to the variable
before the variable is being used (even before sizeof and BEE Conversion). If the variable
name is omitted, a "null variable" will be created to temporarily hold the value. (A null
variable value may sound trivial but can be useful as input to the Conversion without
having to create a variable.) A null variable is treated as an array. If you want to force it to
become a string (for the conversion for example), you can use ":=" instead of "=".

Note 5: The "conv" part is called a BEE Conversion, and it will be applied to the BEE
Value before it is returned. Please see the "var" tag for details. (Operator sizeof is applied
after the BEE Conversion.)

The value of a BEE Variable is specified by a pair of curly brackets surrounding the BEE
Variable name. Whether the variable is in a "scaler" format (with the element part) or an
array format (without the element part), it will be converted to string once it was
surrounded by a pair of curly brackets. The resulting string will replace the curly bracket
and the variable name in it. This operation is done repetitively until all BEE Variables in
the string are resolved.

Please note that the variable evaluation is done literally. If variable "a" is "5", "{a}0" will
evaluate to "50", and "{a} + 8" to "5 + 8" (not 13). To make calculation, you need to use
"(expr){a} + 8".

Example 1:

var myinfo = "age";
var age = 18;
display "What is your {myinfo}?\n"; // What is your age?
display "I’m {{myinfo}}.\n"; // I’m 18.

Example 2:

// "customer" is a database select result currently
// pointing to a man called Peter Smith.
var person = "(database)customer";
var sexName = "(array)M=>Male,F=>Female";
var title = "(array)Male=>Mr,Female=>Ms";
display "Hello, {title:{sexName:{person:Sex}}} {person:Name}";
// Output: Hello, Mr Peter Smith

Example 3:

var abc = "IAmFine";
// {abc} -> IAmFine
// {abc|words} -> {abc:|words} I Am Fine
// {#abc} -> 1 (as the array has only one element)
// {#abc:} -> 7 (and that element evaluates to 7-char string)
// {#abc:|words} -> 9 (and it is "I Am Fine", 9-char long)

Please note that ${#myname} returns the number of elements in the myname array, and
${#myname:} returns the length of its default element (the one indexed by blank in the
myname array). That’s why from the above example, {#abc} evaluates to 1 and {#abc:}
evaluates to 7.

BEE Script User Reference 30

3.3 BEE Conversions

As discussed before, a variable value can be appended a ’|’ and the name of a BEE
Conversion, which convert the value into another value to be used in the expression
instead of the original value.

The Conversion name can be optionally followed by a ’:’ and an argument string. If
multiple arguments are required, it will be in a comma-delimited string format. All
occurrences of "@value" in the argument string will be replaced by the input string.

There are two types of BEE Conversion: Intrinsic Conversions (built-in to the BEE system)
and User-defined Conversions (defined in the code as a function). The latter take
precedence. That is if a User-defined Conversion has the same name as one of the
Intrinsic Conversions, the User-defined Conversion will be used instead.

3.3.1 Int rinsic Conversions

Intrinsic conversions are a set of built-in conversions that handles common needs in
programming a commercial website.

In the following descriptions, the input string is passed by value instead of by reference
(unless explicitly specified). It does not matter when converting a value, but when
converting a variable, the changes will NOT be reflected on the variable.

Example:

var x = "apple";
var x conv="uppercase" display=1; // display "APPLE"
display "{x}"; // x is still "apple"
var y = "{x}" conv="uppercase";
display "{y}"; // y is "APPLE"

Note: Convert-by-reference has a "side-effect" that an undefined variable will be defined
after being converted by reference.

In the following descriptions of BEE Conversions, when a true or false is said to be
returned, in fact, a literal 1 or 0 will be return respectively. You can use the result quoted
or unquoted. They means the same. However, quoting even a boolean is safer in case
there’s a program bug that set a boolean-to-be as a null string.

Here is a list of Intrinsic BEE Conversions:

Conversion Input
Type

Output
Type

Description

++ String String Increase the input string by one numerically.

This input string is passed by reference. It must
be either a variable as in:

var i conv="++";

or a value casted as a variable as in:

var j = "(var)i" conv="++";

BEE Script User Reference 31

+= String String Increase the input string by the number in the
argument string numerically.

This input string is passed by reference. It must
be either a variable as in:

var i conv="+=:3";

or a value casted as a variable as in:

var j = "(var)i" conv="+=:3";

-- String String Decrease the input string by one numerically.

This input string is passed by reference. It must
be either a variable as in:

var i conv="--";

or a value casted as a variable as in:

var j = "(var)i" conv="--";

-= String String Decrease the input string by the number in the
argument string numerically.

This input string is passed by reference. It must
be either a variable as in:

var i conv="-=:3";

or a value casted as a variable as in:

var j = "(var)i" conv="-=:3";

? String String Take the argument string as a comma-delimited
list of three arguments. The first argument is a
logical expression representing a condition. If
the condition evaluates to true, return the second
argument. Otherwise, return the third one.

Yes, the input argument is ignored. So you can
use the shorthand {|?condition,trueVal,falseVal}.

ana String String Return "an" if the input string starts with a vowel
letter (A, E, I, O, U or their lowercase letter) or "a"
otherwise.

base64decode String String Take the input string as a MIME base64
encoded string and return the decoded string.

base64encode String String Take the input string and return the MIME
base64 encoded string.

basename String String Take the input string as a file name with path
(directory specification with "/") and return the file
name with the path stripped off.

bracketed String String Return the input string preceded with the first
argument string and succeeded with the second
argument string, if the input string is not blank.
Otherwise, return blank.

brackets String String Same as "bracketed"

BEE Script User Reference 32

bracket String String Same as "bracketed"

caseless String String Take the input string and produce a regular
expression that can match the string case
insensitively. For example, "abc" will become
"[Aa][Bb][Cc]".

classname String String Take the input string as a class name, but if it
happens to be in a variable form, extract only the
class name. Return the class name as such.

concat String String Append the argument string to the input string.

This input string is passed by reference. It must
be either a variable as in:

var s conv="concat:abc";

or a value casted as a variable as in:

var x = "(var)s" conv="concat:abc";

concatvar String String Same as "concat", except that you can use
variable costing like:

var s conv="concatvar:(var)y";

Like in "concat", "concatvar" is passed by
reference as well.

"concatvar" is usually used to join values
together without macro substitution.

Note: If the argument variable is specified as an
array, only the default element will be appended
to the input variable.

count Array String Return the number of elements in the input
array.

countstr String String Return the number of times the argument string
occurs in the input string.

countstric String String Return the number of times the argument string
occurs in the input string, ignoring case.

countstring String String Same as "countstr"

countstringic String String Same as "countstric"

countstringre String String Same as "countstrre"

countstrre String String Return the number of times the substring that
matches the regular expression in the argument
string occurs in the input string.

crypt String String Encrypt the input string and return the result.
The argument string specifies the type of
encryption: StdDES (default), ExtDES, MD5 and
Blowfish.

If the argument string is 13 characters or more, it
will be taken as an encrypted string to verify

BEE Script User Reference 33

against the input string, and true is return if it is a
match or false otherwise. In this case, the type
of encryption can be optionally specified as the
second argument.

dbregexp String String Return a regular expression that the underlying
database platform can understand, from the
"common" regular expression contained in the
input string. e.g. In MySQL, Common regular
expression "a*b.c" will be converted to
"^a.*b\.c$".

dec String String Same as "-="

decrease String String Same as "-="

default String String If the input string is false, return the argument
string. Otherwise, return the input string
unchanged.

dirname String String Take the input string as a file name with path
(directory specification with "/") and return the
path with the file name stripped off.

empty String String Return true if the argument is ’0’ (literal zero or
numeric zero), blank (’’) or not defined; return
false if otherwise.

escape String String escape:quote or escape:quotes
Add a backslash (’\’) in front of any single or
double quotation marks found in the input
string.

escape:single, escape:singlequote or
escape:singlequotes
Add a backslash (’\’) in front of any single
quotation marks found in the input string.

escape:double, escape:doublequote or
escape:doublequotes
Add a backslash (’\’) in front of any double
quotation marks found in the input string.

escape:comma or escape:commas
Add a backslash (’\’) in front of any commas
found in the input string.

escape:nonalnum
Add a backslash (’\’) in front of any non-
alphanumeric characters found in the input
string.

escape:crlf
Add a backslash (’\’) in front of any carriage-
return or line-feed characters.

escape:lfcr, escape:newline, escape:linefeed
Same as escape:crlf

escape:escape

BEE Script User Reference 34

Add a backslash (’\’) in front of any
backslashes.

formatnum String String Take the argument string as a comma-delimited
argument list. The first argument is the length of
the resulting string, the second is the number of
decimal places, and the third is a stuff character.

The conversion will round the input number to
the required decimal place (default 0), comma
the integer part to separate groups of three digits
from the left of the decimal point. Then if the
resulting string is shorter than the specified
length, the stuff character will be pre-pended (on
the right to make up the required length.

formatnumber String String Same as "formatnum"

found String String Return true if the argument string occurs in the
input string, or false if otherwise.

foundic String String Return true if the argument string occurs in the
input string ignoring case, or false if otherwise.

foundre String String Return true if the substring that matches the
regular expression in the argument string is
found in the input string, or false if otherwise.

highlight String String Take the argument string as a comma-delimited
argument list. The first argument is the "begin-
string", the second is the "end-string", and the
rest is a list of highlighted strings.

The conversion will find all occurrences of any
highlighted strings from the input string and
precede each with the begin-string and succeed
each with the end-string.

(If the begin-string is blank, it will be taken as
"<i><u>"; if the end-string is blank, it will be
taken as "</u></i>".)

hmstosec String String Convert a duration from the H:M:S format to the
number of seconds. e.g. 2:34:56 to 9296

htmldisp String String Replace HTML sensitive characters with their
proper representation. e.g. & to &, < to <
and > to >

htmlstrip String String Strip any HTML tags found in the input string and
convert hard spaces () to soft ones and
multiple spaces to single ones.

if String
or
Array

String
or
Array

Take the argument string as a comma-delimited
list of two arguments. The first argument is a
logical expression representing a condition. If
the condition evaluates to true, return the original
input string unchanged. Otherwise, return the
second argument.

BEE Script User Reference 35

The second argument is sometimes called the
alternative value, when the condition is not met.

If the input is an array, the second argument and
onwards will form the "alternative array", which
will be returned when the condition evaluates to
false.

inarray Array String Search the input array for an element having the
same value as the argument string and return
true if it is found, or false if otherwise.

inc String String Same as "+="

increase String String Same as "+="

inverse Array Array Convert the input array into a new array by
swapping the key and the value.

e.g. if the input is k1=>v1,k2=>v2, the output will
be v1=>k1,v2=>k2. If more than one element
have the same values, only the key of the last
element having that value will be used.

isset String
or
Array

String For input string, return true if it is defined, or false
if otherwise.

For input array, return true if it is defined (even
without any elements,) or false if otherwise.

key Array Array Return an array which contains all the keys of
the input array. The index of the output array
starts from 0 (for the first element that contains
the first key of the input array).

keyof Array String Take the argument string as a numeric index
and return the key of the element in the input
array. The argument string is default to 0, which
means the key of the first element.

keys Array Array Same as "key"

list Array String Generate a string representation of the input
array according to the format specified in the
argument string. The default format is:

(’@key’=>’@value’),()

BEE Script User Reference 36

 The format contains two small brackets, defining 5 format parts:

OPEN (REPEAT) SEPARATOR (BEFORELAST) CLOSE

OPEN The string before the list

REPEAT The format of the element with the key represented
by @key and value by @value.

SEPARATOR The string that comes between any two adjacent
elements.

BEFORELAST The last separator. If blank, the normal separator
will be used.

CLOSE The string after the list.

Here is an example:

var arr = "(array)goalie=>John, defender=>Matt, striker=>Bill";

display "{arr|list:We have (@value as the @key), (and); what

a winning team!}";

The output would be:

We have John as the goalie, Matt as the defender and Bill as

the striker; what a winning team!

listall Array String Same as "list"

listval Array String Same as "list" except that blank values will be
excluded

listvalue Array String Same as "listval"

listvalues Array String Same as "listval"

lowercase String String Convert a all letters in a string to lowercase.

meansfalse String String Returns true if the input string is "false", "no",
"off" or a numeric "0" (case insensitive). Returns
false if otherwise. This conversion is usually
used to handle user input.

meanstrue String String Returns true if the input string is "true", "yes",
"on" or a numeric non-zero (case insensitive).
Returns false if otherwise. This conversion is
usually used to handle user input.

match String Array Match the regular expression in the argument
string to the input string, and return a 10-element
array (regardless the number of matches).

The first element of the array (indexed by 0) is
the string matching the regular expression.

If small bracket pairs are found in the regular
expression, the second element (indexed by 1)
will contain the substring enclosed by the first left
open bracket and its corresponding closing
bracket exclusively, and the third element
(indexed by 2) will contain the one by the second
left bracket and so on.

BEE Script User Reference 37

An empty array will return if it is not a match.

merge Array Array Take the argument string as an array
specification and merge it to the input string.
That is to append the argument array to the input
array and return the result array. For any
common elements (with the same element name
in both arrays), the one in the argument array
element will replace that of the input array
element. (Numeric key will be ignored and the
element will take on the positional index – 0 for
the first element and so on.)

newkey Array Array Return an array containing strings (usually
numeric) which can be used as the keys for new
elements of the input array (i.e. guarantee
uniqueness.) No element is created. The
argument string is the number of keys to be
returned. Default is to return one key only.

newkeys Array Array Same as "newkey"

newval Array Array Return an array containing strings (usually
numeric) which are not equal to any elements of
the input array (i.e. guarantee uniqueness.) No
element is created. The argument string is the
number of values to be returned. Default is to
return one value only.

newvalue Array Array Same as "newval"

newvalues Array Array Same as "newval"

nosysargs Array Array Remove all possible system arguments from the
input array and return the result array.

parseform String Array Convert a query string passed via the URL from
a form GET submission, into an array of which
each element correspond to a submitted value
(indexed by the entry name.)

The conversion "parseform" is usually used
when you have acquired the query string in ways
other than the URL. For those from the URL, it
would be easier to access them via sys%form or
form%.

parseurl String Array Take the input string as a URL and returns the
parts of it including scheme", "host", "port",
"user", "pass", "path", "query", and "fragment".

parsevar String Array Take the input string as a BEE variable name
and return an array of at most five elements
indexed by "class", "file", "name", "element" and
"conv", representing the five parts of the BEE
variable name in the input string.

At least "class" and "name" will be returned
("class" is default to "value" and "name" can be

BEE Script User Reference 38

blank) unless the input string is empty, in which
case an empty array (one without elements) will
be returned.

plural String String Convert the number in the input string into a
quantity with the unit specifies in the argument
string. If the absolute value of the number is
greater than one, the unit will be in plural form
(which is generated by observing only simple
rules like -s, -ies, etc.) If the number is zero,
"No" followed by the plural unit will be returned.

pluralunit String String Like "plural" except that it only returns the unit
part without the quantity.

Pop Array String Take the last element of the input array away,
and return that element.

The input array is passed by reference. It must
be either a variable as in:

var a conv=pop;

or a value casted as a variable as in:

var a = "(var)arr" conv=pop;

precede String String Return the input string preceded with the
argument string if the input string is not blank.
Otherwise, return blank.

present Array String Generate a string representation of the array,
one item per line, or if the item is multiple lines,
show each line under the key heading.

printf String String Take the format from the input string and
substitute the variables from the comma-
delimited argument string, and return the result.

propercase String String Convert the first letter of every word in the input
string into uppercase. Optionally, you can use
the argument string to specify a word boundary
character. The default is space.

push Array Array Append the argument string to the input array
and return the result array.

The input array is passed by reference. It will get
an extra element at the end after this operation.

regexp String String Return a regular expression from the "common"
regular expression contained in the input string.
e.g. Common regular expression "a*b.c" will be
converted to "^a.*b\.c$".

repeat String String Concatenate the input string to itself a number of
times as specified in the argument string and
return the result.

replace String String Take the argument string as a comma-delimited
list of two arguments, then find all occurrences of

BEE Script User Reference 39

list of two arguments, then find all occurrences of
the first argument in the input string and replace
them with the second argument. (See also
"xreplace")

replacere String String Take the argument string as a comma-delimited
list of two arguments, then find from the input
string all matches of the regular expression
contained in the first argument and replace them
with the second argument.

If the regular expression contains small brackets,
$num in the second argument will be replaced
by the matching content of the "num"th brackets
in the regular expression.

(See also "xreplacere")

reverse Array Array Returns an array in reverse order of the input
array (both the value and the key.) That is the
last element would become the first and the first
would become the last.

round String String Round the input string as a floating point number
to the precision (number of digits after the
decimal point) specified in the argument string.

search Array String Search the input array for an element having the
same value as the argument string and return
the key of that element. If not found, return the
second argument, or blank if none is specified.

sectohms String String Convert a duration from the number of seconds
to the H:M:S format. e.g. 9296 to 2:34:56

setkeys Array Array Take the argument string as an array
specification and use them to replace the keys in
the input array, the return the result array.

If there’re duplicated keys in the argument array,
all elements assigned with that key will be
overwritten by the last one, but it will take the
position of the first one.

If there’re more keys than are required, the
excessive keys in the argument array will be
ignored.

If there’re less keys than are required, the
excessive elements in the input array will all
have the blank key, and the last blank-keyed
element will prevail taking the position of the first
blank-keyed element.

setvalue Array Array Set all the elements in the input array to the
argument string and return the result array.

shift Array String Take the first element of the input array away,
and return that element.

BEE Script User Reference 40

and return that element.

This input array is passed by reference. It must
be either a variable as in:

var a conv=shift;

or a value casted as a variable as in:

var a = "(var)arr" conv=shift;

shuffle Array Array Randomise the position of the input array, and
return the result array.

If the argument string is "key" or "keys", only the
keys are randomised. If "value" or "values", only
the values are randomised. If "all" or "both", the
keys and the values are both randomised.

slice Array Array The argument string is taken as a comma-
delimited list of two arguments: offset and length.
The input array is then "stripped" starting from
the offset position (first element is 0) until the
number of elements specified by "length" is
collected, or the end of the input array if "length"
is not specified, or "length" elements before the
end if "length" is negative.

sort Array Array Sort the input array then return the sorted array
as the result.

The argument string is taken as a comma-
delimited list of arguments, which has the
following effects:

value (default): keep key-value association

valueonly: sort values only ignoring all keys

key: sort the keys (only if "valueonly" is not set)

reverse (or rev): sort in reverse order

numeric: sort in numeric order

string: sort in string order (only if "numeric" is not
set)

split String Array Take the input string as a space-delimited list
and split the list into an array of its elements in
the same order. If a argument string is specified,
it will be used as the delimiter instead of space.

splitre String Array Same as "split" except that the delimiter
argument can be a regular expression.

strtotime String String Convert a date-time string in the input string into
timestamp format (number of seconds since 1
Jan, 1970 GMT). Common language like
yesterday, next friday, last week, 3 months, -2
years, etc.

BEE Script User Reference 41

stringtoarray String Array Convert the input string into an array of which
each element contains a character of the
corresponding position in the input string.
(Element 0 is the first character.)

strtoarr String String Same as "stringtoarray"

strftime String String Convert a timestamp (number of seconds since
1 Jan, 1970) in the input string into the format
specified in the argument string, according to the
standard of the Unix "date" command. (Default
argument is "%c".)

strlen String String The length of the input string. (This is useful to
avoid the ambiguity of the sizeof operator (’#’)
which may be applied to an array, as "strlen"
work on string only.)

strpos String String Search the input string for the argument string
and return the position if found (0 is the first
character). If not found, return -1.

You can optionally specify the second argument,
which is the position in the input string where the
search starts.

substr String String Return a sub-string of the input string starting
from the position indicated by the number in the
argument string. The first character is position 0.
The argument string may contain the maximum
sub-string length in the optional second
argument separated from the first one by a
comma. If the length is not specified, the sub-
string will extend to the end of the input string.

substring String String Same as "substr"

succeed String String Return the input string appended with the
argument string if the input string is not blank.
Otherwise, return blank.

surround String String Same as "bracketed"

teafilter String String Used by the TEA Editor to adjust the content
before saving. The input is NOT supposed to be
macro-expanded. This conversion deals with
"defects" in the Editor like putting "&" in a
variable as "&", and correct it.

tolower String String Same as "lowercase"

toproper String String Same as "propercase"

toupper String String Same as "uppercase"

trim String String Trim the leading and trailing white spaces from
the input string.

translate String String Take the array specification in the argument
string (in the form of comma-delimited list of

BEE Script User Reference 42

[key=>]value) and use the input string as an
array index (the code) to find the corresponding
value (the translated text), and return the value.

truncate String String Take the argument string as a comma-delimited
list of two arguments. The first argument is a
number indicating the length which the truncation
will occur if the input string is longer than.

The optional second argument specifies a trailer
to append to the end of the result if the truncation
did occur. e.g. the Conversion of "truncate:10,..."
will turn "This is an apple." to "This is an...".

unescape String String Remove backslashes (’\’) from the input string
unless it is the last character.

unique Array Array Remove all duplicated values from the input
array and return the result array.

unless String
or
Array

String
or
Array

Take the argument string as a comma-delimited
list of two arguments. The first argument is a
logical expression representing a condition. If
the condition evaluates to false, return the
original input string unchanged. Otherwise,
return the second argument.

The second argument is sometimes called the
fallback value, when the condition is met.

If the input is an array, the second argument and
onwards will form the "fallback array", which will
be returned when the condition evaluates to true.

unshift Array Array Append the argument string to the input array
and return the result array.

The input array is passed by reference. It will get
an extra element at the beginning after this
operation.

uppercase String String Convert a all letters in a string to uppercase.

urlargstrip String String Strip from the input string the first occurrence of
the question mark (’?’) and everything
afterwards.

urldecode String String Convert all occurrences of a percentage sign
(’%’) followed by two hexadecimal digits into their
corresponding literal characters.

urlencode String String Convert all non-alphanumeric characters into a
percentage sign (’%’) followed by two
hexadecimal digits, with the exception of hyphen
(’-’), underscore (’_’) and dot (’.’).

value Array Array Return an array which contains all the values of
the input array. The index of the output array
starts from 0 (for the first element that contains
the first key of the input array).

BEE Script User Reference 43

values Array Array Same as "value"

varname String Array Take the input string as a variable name
(optionally with initializer and conversion) and
convert it into a 7-element array indexed by:

var – The variable name (the input string without
the initializer and conversion)

class – The class part

file – The file part

name – The name part

element – The element part

value – The initializer

conv – The conversion part

verb String String Take the input string as an English verb and
convert it into a form specified in the argument
string, which can be

do: return the input string (no conversion)

doing: convert ~ or ~e into ~ing

did: convert ~ or ~e into ~ed

done: convert ~ or ~e into ~ed

be: return "are" if the input string is 0 or a
number greater than 1 or less than –1.
Otherwise, return "is".

where ~ represents the verb in the input string.

washval String String Find all substrings that match the BEE Value
Syntax, and replace the first character of such
substrings by the first argument (default '[') and
the last character by the second (default ']').

washvalue String String Same as "washval"

washvalues String String Same as "washval"

word String String Separate joint words by insert a space before
each capital letter or '@' sign. All caps string
(e.g. acronyms) are recognised as one word.

words String String Same as "word"

xreplace String String Same as "replace" except that it handles special
characters and escapes cleaner.

xreplacere String String Same as "replacere" except that it handles
special characters and escapes cleaner.

BEE Script User Reference 44

3.3.2 User-defined Conversions

User-defined conversions are functions written by the programmer that follows a certain
input and output (argument and result) standard so that it can be used as a BEE
Conversion. User-defined conversions take precedence over Intrinsic conversions, so that
programmers can overwrite intrinsic conversions by providing his or her own.

Input

The conversion function will be given the following arguments:

arg%value The value string regardless of the input structure. If the
input happens to be in array form, this argument will contain
the default element of the array.

 This is used for functions that expects a string input.

 This argument can be represented as "arg%function:value"
(following the "arg" class convention) or "arg%value:".

arg%values The value array regardless of the input structure. If the input
happens to be a string, it will be put into the default element
of arg%values.

 This is used for functions that expects an array input. Avoid
using this for string input. Here is an example of a pitfall:

var petowner:katty = "John Smith";
display "{petowner:katty|myconv}";
...
function myconv
{
 // arg%function:value is "John Smith"
 // arg%values is katty=>"John Smith"
 // arg%values:katty is "John Smith"
 // but the default element of arg%values
 // is undefined
}

arg%argv The argument array. The first element is arg%argv:0, which
is the function name. The second element is arg%argv:1,
which is the first argument, and so on.

arg%argc The number of elements in the argument array. The value
is the same as {#arg%argv}. Please note that the counting
includes the function name in arg%argv:0, so if you have
one argument, arg%argc is 2.

 This argument can be represented as "arg%function:argc"
(following the "arg" class convention) or "arg%argc:".

BEE Script User Reference 45

arg%arg The argument string of the conversion. It is specified in the
calling command after the conversion name and separate
from it by a ’:’. The system will present the argument string
to the function as it is after variable evaluation on the
command line. This allows the code to access the full
argument string (instead of those in arg%argv).

 This argument can be represented as "arg%function:arg"
(following the "arg" class convention) or "arg%arg:".

arg%var The variable name (this is valid only if converting a "bare"
variable as in var myVar conv="myConv"; (Please note that
user-defined conversion is operating in a local Context, so
your need to link it to the parent. e.g. parent "{arg%var}";
var argVar =& "{arg%var}"; and changes to argVar will be
reflected to the converted variable.)

 This argument can be represented as "arg%function:var"
(following the "arg" class convention) or "arg%var:".

Output

The conversion function is to return the value via result%function. If the returned value
contains the default element and no other elements, the conversion will return a string.
Otherwise, an array will be returned instead. (Even when the array contains one single
element, as long as it is not the default element, the conversion will still return an array.)

Example 1 – Simple increment:

function inc
{
 var by = "{arg%argv:1}";
 if ({#by:} == 0) var by = 1;
 var result%function = "(expr){arg%value} + {by}";
}

display "2" conv=inc; // 3
display "2" conv=inc:8; // 10

var a = 2 conv=inc;
display "a is {a}
\n"; // a is 3

var a conv=inc;
display "a is still {a}
\n"; // a is still 3

Example 2 – Increment by reference:

function inc

BEE Script User Reference 46

{
 var by = "{arg%argv:1}";
 if ({#by:} == 0) var by = 1;
 var result%function = "(expr){arg%value} + {by}";

 if ({#arg%var:} > 0)
 {
 // We need to modify the variable too
 parent "{arg%var}";
 var argVar =& "{arg%var}";
 var argVar = "{result%function}";
 }
}

var a = 2 conv=inc;
display "a is {a}
\n"; // a is 3

var a conv=inc;
display "a is now {a}
\n"; // a is now 4

Example 3 – Increment by multiple arguments:

function inc
{
 var by = "{arg%argv:1}";
 if ({#by:} == 0) var by = 1;
 var result%function = "(expr){arg%value} + {by}";

 if ({#arg%var:} > 0)
 {
 // by reference
 parent "{arg%var}";
 var argVar =& "{arg%var}";

 clear arg%argv:0; // The function name is out of the loop
 foreach (arg%argv)
 {
 var by = "{foreach}";
 if ({#by:} == 0) var by = 1;
 var result%function:{foreach:key}
 = "(expr){arg%value} + {by}";
 }

 if ({#arg%var:} > 0) var argVar = "(var)result%function";
 }
}

var a = 2 conv=inc;
display "a is {a}
\n"; // a is 3

var a conv=inc;
display "a is now {a}
\n"; // a is now 4

BEE Script User Reference 47

var a conv=inc:10,20,30;
display "a:{a|list}
\n"; // a:’’=>’14’,’1’=>’14’,’2’=>’24’,’3’=>’34’

3.3.3 To St ring or Not to St ring

Some intrinsic conversions are used to convert string to string and some array to array.
There are others that convert array to string as well. While the structure (whether it is a
string or an array) of the output is controlled by the conversion, the input is not.

If the input is in element form (string) and the conversion takes a string as input, it would
be a simple string conversion. If the input is in array form (element part missing) and the
conversion takes an array as input, it would be a simple array conversion.

However, it is more complicated when the input is array form but the intrinsic conversion
expects a string input, or when the input is a string but the intrinsic conversion expects an
array. For a user-defined conversion, the system cannot tell whether it expects a string or
an array, which adds to the complications.

To take the complication further, the array form is commonly used as a simple variable
and means its default element (the one indexed by blank), and they’re indistinguishable in
syntax.

Here is a table to summarise the situations and how they were handled (in sequence of
precedence):

Input value Conversion How to handle

expects an array Convert the input as an array.

expects a string The system will apply the conversion
to each element in the input array one
by one. This automatically takes care
of the case of a simple variable, in
which the default element will be
converted.

is an array
or simple variable

Examples:

class%name
"(array)..."
"(db)..."

is user-defined The system calls the user-defined
function passing it the standard
arguments.

expects a string Convert the input as a string

expects an array The system will take the conversion as
a user-defined function and passes the
standard arguments to it accordingly.

is a string

Examples:

class%name:elem
class%name:
"(expr)..." is user-defined The system calls the user-defined

function passing it the standard
arguments.

BEE Script User Reference 48

Please note that if a conversion can process both array and string, it is suggested to make
the Input Value explicit array or string to avoid ambiguity. For example:

var x = -1;
display "{x:|if:@value > 0,unknown}";

The BEE Variable "x" is specified as a string (x: instead of x). Otherwise, the conversion
"if" would be on the array of x, in which @value would not make sense, and the
conversion would not work. This magic string-making colon is useful even in variable-less
value initialization such as "{:=(expr){a} + {b}|if:@value > 10,not even ten}".

Please also note that curly bracketed variables always evaluate to a string, even the
conversion output an array (in which case, the default element will be used to expand the
curly bracket). If you really want to convert a string to an array, you need to use the "conv"
parameter.

Example:

var myString = "abc";
var myArray = "{myString|strtoarr}"; // Got a blank
var myArray = "{myString}" conv=strtoarr; // Got an array

BEE Script User Reference 49

4 BEE Syntax

BEE comes with two interchangeable syntax: BEE Script and BEE Tag.

BEE Script is program code like syntax with common constructs like variable assignment,
if-else, looping, function and other controls. It starts with the command name, then
followed by Attribute Name-Value Pairs in the form of name=value, and terminated with a
semi-colon ’;’. It is useful in sections where processing algorithm is the dominant process
(occasional outputs can be done with the display statement.)

BEE Tag is HTML like tag system that starts with "<bee" or "<bee:" followed by a tag
name then a series of Attribute Name-Value Pairs (name=value), and ends with ">" or "/>".
(The tag name can be defined as an attribute as "tag=tagname".) It is useful in sections
where displaying web page content is the dominant process (occasional controls can be
inserted in BEE Tag forms, inter-mixing with the content and HTML Tags without causing
syntax problems with non-BEE compliant authoring tools or web server.)

Internally, all BEE Script statements and structures are translated into a series of BEE
Tags before being sent to the BEE Tag parser. So by learning BEE Script, you would be
able to read and write BEE Tag with no problem.

In this document, the following presentation convention is followed:

Constructs within a pair of square brackets are optional.

’...’ means repeats are allowed.

’|’ is used to separate two or more alternatives of which one and only one will be
employed.

4.1 General Syntax

There are syntax rules that apply to both BEE Script and BEE Tags.

1) Command Names must be a string of alphanumeric characters or underscore that
starts with a non-numeric character. Leading underscore string will be ignored.

2) There must be at least a white space before the Attribute Name. If there are white
spaces inside the value, the whole value should be quoted by a pair of double or
single quotation marks.

3) Spaces around the equal sign in an Attribute Name-Value Pair are optional.

4) Unquoted Attribute Values are terminated by a white space or the terminator (’;’ for
BEE Script and ’>’ for BEE Tag – if the BEE Tag is terminated by '/>', the last attribute
value must be quoted).

BEE Script User Reference 50

5) Quoted Attribute Values open and close with the same quotation mark (both double or
both single). If the value contains the quotation mark itself, it can be escaped by a
back-slash. (Quoted Attribute Values can contain white spaces including line break.
So you can specify multi-line values.)

6) An "Absolute" Attribute Value is one that is NOT evaluated automatically for BEE
Variables before passing to the tag function (please see BEE Variables for details
about the evaluation process.) An Attribute is "absolute" if the Attribute Name is
preceded with an exclamation mark (’!’).

7) Attribute Names must be a string of alphanumeric characters or underscore that starts
with a non-numeric character. You can be optionally preceded by an underscore ’_’
or an exclamation mark ’!’. Attribute Names are case insensitive and all spaces and
underscores in it will be ignored.

8) If the Attribute Name and the equal sign is omitted, the Attribute Name is assumed to
be the Tag Name. For example, "clear abc;" means "clear clear=abc;".

9) The Attribute Name "tag" is reserved for parser use. (In fact, the Tag Name is the
Attribute Value of the "tag" parameter. "<beeclear clear=abc>" is the same as "<bee
tag=clear clear=abc>".)

10) If the BEE Command Name is prefixed by an object name and a ’%’ sign, the object
name and the ’%’ sign will be extracted and a new Attribute Name "this" will be
inserted with the object name as the Attribute Value. For example, "myobj%func ..."
will be translated to "func this=myobj ...".

One point that may not be obvious from the quotation rules (4 and 5): Because BEE
Variables are non-typed, quotation marks do not change the type of the value they
enclosed; they only serve to allow spaces inside the value without causing parsing
problem. For example, var abc = "flower"; is the syntactically and semantically the
same as var abc = flower; or even var "abc" = flower;.

However, if there are white spaces in the value string, the quotation marks are required.
For example, var abc = "red flower"; is OK, but var abc = red flower; will
assign only "red" into variable abc. The string "flower" will be taken as a separate
parameter and ignored.

4.2 BEE Script Syntax

BEE Script: tagname [name=value ...];

Here are the rules specifically for BEE Script syntax:

1) A BEE Script section starts with <script language="bee"> and ends with </script>.
You can optionally put src="filename" in the <script> tag. e.g. <script language="bee"
src="myfunc.bs">.

2) White spaces between ’;’ and the start of the next statement are ignored.

3) Texts between ’//’ and the end of line, and between ’/*’ and ’*/’ are ignored.

BEE Script User Reference 51

4) A BEE Script Statement starts with a Command Name and ends with a semi-colon ’;’.

5) Between the Command Name and the end of the command (the semi-colon) is a
series of name=value pairs called attributes (except for "access", "if", "elseif",
"foreach", "while" and "function" in which small brackets and curly brackets are usually
involved.)

6) White spaces between two BEE Script statements are ignored.

4.3 BEE Tag Syntax

BEE Tag: <beetagname [name1=value1 ...]>

Here are the rules specifically for BEE Tag syntax:

1) A BEE Tag is put in the HTML scope and there is no need to be surrounded by
<script> tags.

2) White spaces between two BEE Tags are part of the HTML document and will
therefore show up in the document source (not necessarily the display though). White
spaces inside a BEE Tag are ignored unless within a Quoted Attribute Value.

3) Comments are surrounded by ’<!--’ and ’-->’ as in HTML tag. (’//’, ’/*’ and ’*/’ are not
recognised in BEE Tag and will be taken literally without hiding any display.)

4) A BEE Tag starts with a ’<bee’ or ’<bee:’ immediately followed by the Command
Name, and ends with ’>’ or ’/>’.

5) Between the Command Name and the end of the command (’>’ or ’/>’) is a series of
name=value pairs called attributes, even for "access", "if", "elseif", "foreach", "while"
and "function", in which a "block-end" tag in the form of "</beeCommandName>" is
required to close the block. For example, <beeif …> should be closed by </beeif>.

BEE Tag name is preceded by "<bee" or "<bee:" with no spaces in between, and the tag
ends with ">" or "/>", just like an HTML tag or XML tag does. Optionally, the symbol "<"
and ">" can be replaced by "[" and "]" respectively, which is useful when your authoring
tool complains about a BEE Tag being misplaced (e.g. inside an HTML Tag).

4.4 From Script to Tag

BEE Script is abstracted from BEE Tag. All BEE Script statements are to be pre-
processed into BEE Tags before being passed to the compiler.

The standard Script-to-tag translation is as following:

BEE Script: tagname [name=value ...];

BEE Script User Reference 52

is translated to

BEE Tag: <beetagname [name=value ...]>

Some BEE Script statements have special syntax to make it more "natural" to
programmers of other common scripting languages.

For example, Conditional statements ("if" and "elseif") and loop statements ("foreach" and
"while") must have a small brackets containing the condition at the end of the statement.
The block of statements that follow (for conditional execution or loop body) must be
surrounded by a pair of curly brackets unless it is a single statement. Please see
individual command syntax for details.

For function declaration, the "function" statement is NOT followed by a semi-colon (’;’).
Instead, it must be followed by an open curly bracket that starts the function body which
will be ended by a close curly bracket. The pair of curly brackets cannot be omitted even
when there is only one statement in the function body.

BEE Script User Reference 53

5 BEE Commands

BEE is designed to be simple to use. There are only 35 BEE Commands and 6 of them
have no arguments and 11 others have just one. Among those with more than one
argument, majority of the arguments have a default value that is rarely specified explicitly.
That’s why the syntax is plain and simple (partly helped by the versatility of the macro-style
BEE Variables.)

There are nine groups of BEE Intrinsic Constructs:

1) Variable Operations
var
clear
group
link

2) Conditional
if
else
elseif
switch
case
hide
show

3) Loop
foreach
while
continue
break

4) Module Calling
function
return
global
parent
include
exec
exit

5) Remote Calling
connector
call

6) Authentication
access
login
logout

7) Data Access
database
dbtree

BEE Script User Reference 54

8) Socket
socketcreate
socketbind
socketlisten
socketaccept
socketconnect
socketread
socketwrite
socketclose
socketcontrol

9) Specific Commands
mailto
text
auth
scheme
output

Even BEE Values are non-typed, BEE Commands do expect a certain pattern in some
particular cases. Those patterns are notated in this section in the following way:

string A string of characters. If white spaces are among them, the string
needs to be enclosed by a pair of single or double quotation marks.
If the enclosing quotation mark appears in the string, it needs to be
"escaped" by inserting a backslash (’\’) in front of the quotation mark.

char A single character.

num A string of numeric numbers (0 to 9, excluding dot)

bool A non-zero number or a non-null string (except ’0’) to indicate a true
value; and 0, ’0’, or a null string to indicate a false value. Here are
some examples of boolean conditions:

1 true
’1’ true
’...’ true
0 false
’0’ false
’’ false

Note 1: ’...’ denotes any non-null string except ’0’ (so ’00’ is true)

Note 2: ’!’ in front of a boolean value will negate it (e.g. !0 is true)

name A string of alphanumeric characters or underscore that starts with a
non-numeric character. Leading underscore string will be ignored.

var A BEE Variable Name (Please see "BEE Variable Name").

value A pattern in the form of (type)string, where type is interpreted by the
specific BEE Command that the value is in.

BEE Script User Reference 55

class A valid name for the "class" part of a BEE Variable. (Please see
"BEE Variable Name".)

file A valid file path and file name. Directory names are separated by
forward slashes (’/’). For relative path, the system include path will
be searched for the named file.

condition A string that evaluates to a logical expression that can determine a
TRUE or FALSE value. The logical expression follows the same
format of other programming languages like PHP. (e.g. == means
equal; != means not equal; >, >=, <, <= and other logical operators
like &&, || etc can be used in the usual sense.)

statement A valid BEE Script statement.

tag A valid BEE Tag.

convSpec A BEE Conversion name optionally followed by a colon (’:’) and an
argument string.

souce A special parameter in the (type)string format. It is for the "foreach"
tag only. Please see "foreach" under "BEE Command Reference"
for more details.

accessControlSpec A special parameter for the "access" tag only. Please see
"access" under "BEE Command Reference" for more details.

URL A valid URL.

emailAddress A valid email address.

action A string of that indicate an action specific for the command.

const A constant value in the "const" class. Some commands such as
"socket" can interpret a string as a constant value.
e.g. the followings are equivalent:
socketcreate domain=const%socket:AF_INET;
socketcreate domain="AF_INET";

The above patterns are interpreted after the variable evaluation. For example, if xyz is a
variable containing "34", the value of 12{xyz}56 will be evaluated to "123456" and
therefore is a num, instead of string as it may appear to be.

BEE Script User Reference 56

5.1 Variable Operations

5.1.1 var – assign a value to a variable, c reate an objec t , or display a value

The "var" command is the mother of all BEE Commands. It has some variance in syntax
to performance different operations. The reason that these operations are not separated
into different commands is that it reads more naturally to have an equal sign in it. It would
be easier to learn as variance of one "assignment" command instead of many others with
different parameters one needs to remember.

To ease the burden of the documentation of the "mother", we have the "link" command
separated into a different section following this one.

Variable Mode:

BEE Script: [var] var [=[!] value] [conv=convSpec];

BEE Tag: <bee[var] var=var [[!]value=value] [conv=convSpec]>

Constructor Mode:

BEE Script: [var] var[%] = new constructor [name=value ...];

BEE Tag: <bee[var] var=var%function:new value=constructor>

<beevar%new [name=value ...];

Display Mode:

BEE Script: display value [conv=convSpec];

BEE Tag: <bee[var] value=value [conv=convSpec]>

Syntax Notes:

The command name "var" can be omitted in both BEE Script and BEE Tag syntax.
This is because "var" is the centre piece of the BEE Tag repertoire, and has been
made the default tag.

Variable Mode

In the Variable Mode, the command accepts a value and assigns it to the BEE Variable.
The operation is "silent" (no display). If the "= value" part is omitted, the variable will still be
accessed, but there will be no effect nor any display. One exception though of the "value-
less var" operation is scheme file loading. e.g. var scheme%myschmfile&;. In this
case, the command name "var" cannot be omitted. (Otherwise, it will be taken as a
function call syntax-wise.) For details, please see "scheme" under the "Variable Name"
section.)

Constructor Mode

BEE Script User Reference 57

Constructor Mode is for creating an object (or class). The constructor is the name of the
function that defines the characteristics of the object and is generally taken as the object
name. The name=value pairs are the parameters for the constructor. For details, please
see "Objectes and Classes". (The ’%’ after the variable name is ignored. It is there only to
make the syntax look better – more natural to see an object name followed by '%'.)

In BEE Tag, there is no one single command to create an object. It is done by assigning
the "new" function of the object by the constructor name, then call the function with
var%new followed by the constructor's parameters.

Display Mode

The Display Mode is characterised by the omission of the variable name. In fact, the
"display" in BEE Script syntax is not a BEE Command. It is only an alias (shorthand
writings) for the "var" command without the variable name var. That is why there is no
"display" BEE Tag. The omission of var from the "var" BEE Tag indicates a display
operation.

Parameters

var is the variable name. Please see the "Variable Name" section.

value is the value in the form of "(type)string". The value type is one of the followings:
"literal" (or "lit", the default), "expression" (or "expr"), "var", "database" (or "db"), and
"array". The whole value (type and string) is evaluated for BEE Variables before being
used for assignment (Variable Mode) or display (Display Mode). For details of variable
evaluation, please see the "Variable Value" section.

Type String

literal
lit
(default)

A string to be literally assigned or displayed. It is the default
type, and therefore the type specification (literal or lit) is usually
omitted.

expression
expr

An expression to be arithmetically evaluated before being
assigned or displayed.

database
db

A database result name (see "database" tag). The database
record of the current position will be retrieved and the fields
assigned to the BEE Variable as individual elements. The
position will move forward to the next database record after the
retrieval. ("database" type is for assignment only. Display
Mode will display nothing, but the position in the record set will
still move forward.)

var A variable name. The "var" type is different from the "literal"
type. While "literal" is always a string, "var" can be a string or
an array (if there is no element part in the variable name.) This
is useful in array assignment or for BEE Conversions (conv=...)
that require array input.

BEE Script User Reference 58

array A comma separated list with each item being in the form of
either "[string]" or "[key]=>[string]".

In the Variable Mode, the resulting array will be assigned to the
BEE Variable. (If the variable to be assigned to has an
element part, the element part will be ignored.)

In Display Mode, it will display nothing unless the array is
converted into a string through a BEE Conversion (conv=...).

Example:

"Dog, Cat, Guinea Pig" would produce an array of three values:
"Dog", "Cat" and "Guinea Pig".

"John=>Dog, Mary=>Cat, Sam=>Guinea Pig" would produce
the same array with their owner’s name as keys (the element
indexes).

In the array value (the "[string]" part), leading and trailing
spaces will be trimmed off unless quoted with single quotation
mark. Comma inside an item can be escaped with a backslash
to avoid being taken as a separator.

Please note that there are different forms to represent a variable in the "value" parameter.
There is one simple rule: {...} always evaluate to a string.

(var)class%name The array in variable class%name, whether it contains
single or multiple elements.

(var)class%name:elemet The string in the variable element class%name:elemet.

(var)class%name: The default element of the class%name array. (The trailing
’:’ is compulsory to distinguish it from the array form.)

{class%name} Same as (var)class%name:, NOT (var)class%name

{class%name:elemet} Same as (var)class%name:elemet.

{class%name:} Same as (var)class%name: (but the trailing ’:’ is optional,
and usually omitted.)

(If the "class%" part is "value%", it can be omitted.)

Notes:

If you do not want BEE to evaluate the value for BEE Variables, you can precede the
parameter name "value" with an exclamation mark (’!’) (as mentioned in "General
Syntax"). However, for BEE Script form, there is no parameter name. In that case, you
can add the ’!’ after the equal sign but leaving at least one white space before the value.

Examples:

BEE Script User Reference 59

var var1 = "abc";
var var2 =! "{var1}"; // var2 will get "{var1}" literally, not "abc".
 // "{var1}" will be evaluated with "var2" later.
var var1 = "def";
display "{var2}"; // will display {var2} at the time

// i.e. display "def", not "abc";

// Beware of the syntax
var a = ! "xyz"; // Good
var a =! "xyz"; // Good
var a=! "xyz"; // Good
var a=!"xyz"; // Bad! Taken as: var a = "!xyz";

conv is the BEE Conversion, which is a function applied after the value has been
evaluated for BEE Variables but before it is assigned or displayed. For details, please see
the "BEE Conversion" section.

name is not really a fixed parameter. The name name can be anything (except for the
parameter names above) and can be more than one. They are used to pass parameters
to the remote function (as indicated by the Attribute Name-Value Pairs in the syntax
description). If a value is preceded by an "@" sign, the rest of the content indicates a
JavaScript expression (instead of a BEE expression.)

5.1.2 link – create a Reference to a variable

BEE Script: var var =& var [context=string];

BEE Tag: <beelink link=var var=var [context=string]>

A variable name is in fact an alias to a content storage (or more technically, an entry in the
symbol table). You may have two different variable names referring to the same variable.
This relationship is called a Reference. Please note that the two variables (or even more)
are of equal footing. You cannot say that one is real and another is a shadow. They’re
both handles to the same content storage. They are both real and they are both shadows.

The "link" command establishes a new Reference (on the left-hand-side) to an existing
variable (on the right-hand-side). References can only be created across compatible
structure in the BEE Variable hierarchy. i.e. You can only link class to class, name to
name, or element to element. Linking incompatible structure does not cause an error but
has no effect at all.

Example:

// Link all variables in oldClass to newClass
var newClass% =& oldClass%;

// Link all elements in oldClass%oldName to newClass%newName
var newClass%newName =& oldClass%oldName;

BEE Script User Reference 60

// Link the two elements only
var newClass%newName:newElm =& oldClass%oldName:oldElm;

If you link two classes together, changing a variable in one class will cause the
corresponding variable (that of the same name) in another class to have the new value as
well. Moreover, creating new variables in one class will cause the other class to have the
same new variable containing the same value. In fact, there is only one class.

This general principal applies to two linked variables too. Changing the value of an
element in one variable will change the same element of the other, and creating an
element in one will cause the other to have the same added to it, because they are the
same variable.

Please note that the "clear" command is in fact clearing the reference to the variable’s
content storage, not the storage itself. If you have created multiple references on the
same variable, clearing one will NOT destroy others. (Clearing the last reference to the
variable effectively remove any means to access the variable from the Context. After that,
the question whether the content storage still exists is meaningless.)

Parameters

link is the name of the new variable (shadow) created to link to an existing variable (real).

var is the name of the existing variable (real) that the new variable (shadow) is linked to.

context is the context identifier of the existing variable to be linked to. The {sys%context}
variable always contains the context identifier of the current environment. With this facility,
you can pass the whole context (and all the classes in it) around.

For example, you can pass the parent’s context to a function to allow it to access the
parent’s variables (can be done with the "parent" command as well). On the other hand, a
function can pass its context to the caller via the result%function variable so that the caller
can access the function’s local context using the "link" command. (Yes, the local context
of the function survive its exist but not accessible unless through the context parameter.)

Please be very careful about linking context. It should be generally avoided unless there
is an absolute need to do so and you know exactly what you are doing.

5.1.3 c lear – undefine a variable

BEE Script: clear var;

BEE Tag: <beeclear "var">

Clearing a variable means to remove the variable from the Context so that it will not be
defined in the Context anymore. It is different from assigning a blank to it. An element
containing a blank will still appear in, say, a "foreach" loop and be counted as an element
in the sizeof (’#’) operation, but a cleared element will not because it does not exist
anymore.

BEE Script User Reference 61

You can clear the entire array by omitting the element part. You can even clear the entire
class (except for system classes) by omitting both the name and element parts.

Example:

clear abc:xyz; // Clear value%abc:xyz
clear abc:; // Clear value%abc: (the default elemnent)
clear abc; // Clear value%abc (the entire array)
clear myclass%; // Clear myclass% (the entire class)

Not all variables can be cleared. Please see "System Classes" for details.

Please note that if the variable has more than one Reference to it, clearing one Reference
does not remove the others. Please see "link" for more details.

5.1.4 group – promote elements into variables (a mat rix)

BEE Script: group var [delim=char] [matrix=class] [result=class]
 [inverse=bool];

BEE Tag: <beegroup var [delim=char] [matrix=class] [result=class]
 [inverse=bool]>

The "group" command creates out of a one-dimensional array a two-dimensional array,
which is called a "matrix". The command generates under the "matrix" class a new
variable for each element in the subject variable (var), then group the new variables by a
common suffix which is separated from the variable name by a delimiter (the "delim"
parameter, default to be ’_’.)

After the operation, result%keys will hold all distinct variable names created, and
result%fields will hold all distinct element names created. (The class name "result" can be
overwritten by the result parameter.)

Examples:

// If we got the followings:
// cart:product_15 = "Orange"
// cart:qty_15 = "4"
// cart:unit_15 = "kg"
// cart:product_23 = "Spinach"
// cart:qty_23 = "1"
// cart:unit_23 = "bunch"

group cart;

// Now we have:
// matrix%15:product = "Orange"
// matrix%15:qty = "4"
// matrix%15:unit = "kg"
// matrix%23:product = "Spinach"
// matrix%23:qty = "1"

BEE Script User Reference 62

// matrix%23:unit = "bunch"
// result%fields = product, qty, unit
// result%keys = 15, 23

Here is a schematic illustration of the example:

cart:product_15 cart:qty_15 cart:unit_15 Before

cart:product_23 cart:qty_23 cart:unit_23

group cart;

matrix%15:product matrix%15:qty matrix%15:unit After
(Variable "cart"
is still intact.) matrix%23:product matrix%23:qty matrix%23:unit

result%fields result%fields:0 is "product" result%fields:1 is "qty" result%fields:2 is "unit"

 result%keycount:product = 2 result%keycount:qty = 2 result%keycount:unit = 2

 result%keys

 result%keys:0 is "15" result%fieldcount:15 = 3

 result%keys:1 is "23" result%fieldcount:23 = 3

In fact, the "group" command creates a matrix out of an array variable. This is useful in a
spreadsheet-like input where the columns are the fields and the row numbers are the
keys. In such case, each form input tag should be named as columnName_rowNumber.
If the spreadsheet is to be used in a database operation, the rowNumber should be
replaced by the value of the read-only key. Please see "dbobj%keyfield" in the "database"
command.

Parameters

delim is the delimiter character that splits the original element name into the element
name part (before the delimiter) and the variable name part (after the delimiter) of the new
variable. The default of "delim" is underscore: ’_’.

If there no the delimiter characters are not found in the original element name, one is
assumed in front of the name. That is the element name part of the new variable is blank.
On the other hand, if multiple delimiter characters are found in the original element name,
only the last one will be used as the delimiter.

BEE Script User Reference 63

matrix specifies the class under which the variables are created. Existing variables in the
matrix class will not be cleared but may be overwritten by newly created variable of the
same name if any. To avoid "polluting the environment", please make sure the matrix
class is clean before using it for the "group" command. The default of "matrix" is "matrix".

result specifies the class for the %fields and %keys variables. (Please see parameter
"matrix".) The default value of "result" is "result".

inverse indicates the inverse-format of the original element names. If inverse is true, the
original element name is taken as n_e, where n is the variable name part and e is the
element name part of the new variable. The default is false, which means the original
element name is in the format of e_n, which is the usual case described above.

There are some points to make about the "matrix" and "result" parameters. If the matrix
created is later on used in a database operation, please remember to specify the same
matrix class in the "database" command as in the "group" command that created the
matrix. Also, please use the database object name as the "result" parameter so that the
"database" command will pick up the %fields and %keys variables properly.

Also, if the "group" command and the "database" command are in two different Contexts,
please make sure you link the matrix and result classes properly using either the "global"
or the "parent" command where necessary.

After the "group" command is executed, the following BEE Variables are made available
(in additional to the matrix variables created):

result%fields Distinct element names created. e.g. Name, Code,
etc.

result%keys Distinct variable names created. e.g. 15, 23, 56, etc.

Remarks: If "f" is in result%fields and "k" is in result%keys,
variable matrix%k:f should contain the value of the
corresponding element in the matrix.

result%fieldcount:key Number of elements in variable key. They usually
contain the same number, which is the number of
"columns" in the matrix.

result%keycount:field Number of variables that got element field in it. They
usually contain the same number, which is the
number of "rows" in the matrix.

BEE Script User Reference 64

5.2 Condit ional

5.2.1 if – condit ional execut ion of a block

BEE Script: if (condition) statement;
 [else statement;]
or if (condition) { statement; ... }
 [else { statement; ... }]

BEE Tag: <beeif "condition">
 tag
 ...
 [<beeelse>
 tag
 ...]
 </beeif>

Note: The condition is surrounded by a small bracket and therefore is taken literally. While
you can (and sometimes need to) quote individual values in the condition, please do not
quota the whole condition with double or single quote. Otherwise, the whole condition will
be taken as a string (and will most likely to be evaluated to true unless it is blank or 0).

The "if" command starts a conditional block structure and therefore an "else" or a
sequence of "elseif" tags can follow the conditional block.

The condition will be evaluated for any BEE Variables before the truth value is determined.
Please note that variables are evaluated as macros and therefore one should bear in mind
the logical expression syntax. In particular, you need to quote strings as required:

Example:

var num = 2;
var item = ’water melon’;

if ({num} > 10) display ’We got plenty’; // Valid
// The condition will evaluate to (2 > 10)

if (’{num}’ > 10) display ’We got plenty’; // Valid
// The condition will evaluate to (’2’ > 10), which is OK.

if (’{item}’ == ’lemon’) display "Can’t eat them"; // Valid
// The condition will evaluate to (’water melon’ == ’lemon’).

if ({item} == ’lemon’) display "Can’t eat them"; // Invalid
// The condition will evaluate to (water melon == ’lemon’).

If the condition is blank, it will evaluate to false.

After the "if" command is executed, the following BEE Variables are made available:

result%if:istrue Set to 1 if the condition evaluates to true, or 0
otherwise

BEE Script User Reference 65

result%if:condition Set to the condition after variable evaluation

5.2.2 else – alternat ive execut ion block

BEE Script: (see "if", "elseif", "access", "hide" and "show")

BEE Tag: (see "if", "elseif", "access", "hide" and "show")

"else" starts an alternative block which will be executed if the previous conditional block is
not (e.g. the condition in an "if" command evaluates to false, or the access-control-
specification in an "access" command does not match with the current session.)

Only "if", "elseif", "access", "hide" and "show" commands can be followed by "else" after
the conditional block. If an "else" command is "out-of-place", it will be ignored (and the
block that follows will be joined with the previous one.)

Example:

if ({form:Qty} > 0) display "Thank you!";
else display "Please enter a positive quantity.";

5.2.3 elseif – condit ional alternat ive execut ion block

BEE Script: if ...
 elseif (condition) statement;
 [else statement;]
or if ...
 elseif (condition)] { statement; ... }
 [else { statement; ... }]

BEE Tag: <beeif ...>
 ...
 <beeelseif "condition">
 tag
 ...
 [<beeelse>
 tag
 ...]
 </beeif>

Note: The condition is surrounded by a small bracket and therefore is taken literally. While
you can (and sometimes need to) quote individual values in the condition, please do not
quota the whole condition with double or single quote. Otherwise, the whole condition will
be taken as a string (and will most likely to be evaluated to true unless it is blank or 0).

The "elseif" command starts a conditional block structure and therefore an "else" or a
sequence of another "elseif" tag can follow the conditional block.

BEE Script User Reference 66

The condition will be evaluated for any BEE Variables before the truth value is determined.
Please note that variables are evaluated as macros and therefore one should bear in mind
the logical expression syntax. In particular, you need to quote strings as required. Please
see the "if" command for examples.

The "elseif" construct is equivalent to "else" followed by "if". The only difference is that you
do not need to have multiple curly brackets and excessive indentation for clarity.

Example 1: Using "else" then "if"

if ({form:Qty} > 100) {
 var deliveryCharge = 0.0;
 display ’Free delivery.’;
} else {
 if ({form:Qty} > 50) {
 var deliveryCharge = 8.0;
 display ’Delivery charge discounted.’;
 } else {
 if ({form:Qty} >= 3) {
 var deliveryCharge = 10.0;
 display ’Thank you.’;
 } else {
 var abort = 1;
 display ’Minimum quantity is 3.’;
 }
 }
}

Example 2: Using "elseif"

if ({form:Qty} > 100) {
 var deliveryCharge = 0.0;
 display ’Free delivery.’;
} elseif ({form:Qty} > 50) {
 var deliveryCharge = 8.0;
 display ’Delivery charge discounted.’;
} elseif ({form:Qty} >= 3) {
 var deliveryCharge = 10.0;
 display ’Thank you.’;
} else {
 var abort = 1;
 display ’Minimum quantity is 3.’;
}

If the condition is blank, it will evaluate to false.

After the "elseif" command is executed, the following BEE Variables are made available:

result%elseif:istrue Set to 1 if the condition evaluates to true, or 0
otherwise

result%elseif:condition Set to the condition after variable evaluation

BEE Script User Reference 67

5.2.4 sw itch – condit ional execut ion of blocks based value matching

BEE Script: switch (value)
 {
 case value:
 statement;
 ...
 [break;]
 [case value:
 statement;
 ...
 [break;]]
 ...
 [default:
 statement;
 ...
 [break;]]
 }

BEE Tag: <beeswitch "value">
 <beecase "value">
 tag
 ...
 [<beebreak>]
 [<beecase "value">
 tag
 ...
 [<beebreak>]]
 ...
 [<beecase>
 tag
 ...
 [<beebreak>]]
 </beeswitch>

Note 1: In BEE Tag form, "case" without a value is the "default" case. (In BEE Script form,
the alias "default" will be translated to a "case" command with no parameter.)

Note 2: All contents (scripts, HTML codes or text), if any, between "switch" and the first
"case" will be ignored.

The "switch" command specify a value for matching with the one in the "case" command.
If one is matched, the block specifies after the "case" command will be executed until a
"break" command is encountered, then exist the "switch" block.

If there is no "break" statement in the block of matching "case" value, the execution will fall
through to the next block until a "break" command is executed. So it is possible that
multiple blocks are executed before the exist of the "switch" block.

If none of the "case" command got a value matching the one in the "switch" command, the
"default" block if exists will be executed. If the "default" block is not specified, the whole
"switch" block will be skipped with no execution at all.

BEE Script User Reference 68

Example:

display "Please wear ";
switch ("{patron}")
{
case "woman":
case "girl":
 display "skirt";
 break;
case "man":
 display "tie and ";
 // Fall through
case "boy":
 display "shirt";
 break;
default:
 display "properly";
}

5.2.5 case – execut ion block matching a value

BEE Script: (see "switch")

BEE Tag: (see "switch")

Note: In BEE Tag form, "case" without a value is the "default" case. (In BEE Script form,
the alias "default" will be translated to a "case" command with no parameter.)

The "case" command specifies a value and starts a block which will be executed if the
specified value matches the value in the previous "switch" command.

5.2.6 hide – uncondit ional non-execut ion of a block

BEE Script: hide statement;
 [else statement;]
or hide { statement; ... }
 [else { statement; ... }]

BEE Tag: <beehide>
 tag
 ...
 [<beeelse>
 tag
 ...]
 </beehide>

The "hide" command specifies the following command or block of commands to be
skipped in execution. It is equivalent to "if (false)". "hide" is useful in debugging or leaving
inactive code in the script for future reactivation.

BEE Script User Reference 69

The script form of the "hide" command is rarely used because you can always inactivate a
block of code by putting a pair of /* and */ around it. (Commented text are stripped before
compilation but blocks hidden by "hide" are still compiled in under an "if (false)". In both
cases, it will not show up to the client browser because BEE is a server side script. No
execution means no display.)

In Tag form, "hide" is useful in hiding block of HTML code from the client browser. If you
simply commented out the code with a pair of <!-- and -->, the inactive block will still show
up in the client browser because HTML comments are stripped only at the client display,
not even from the page source.

Note: "hide" starts an "if" block structure and therefore an "else" or an "elseif" tag can
follow the conditional block.

5.2.7 show – uncondit ional execut ion of a block

BEE Script: show statement;
 [else statement;]
or show { statement; ... }
 [else { statement; ... }]

BEE Tag: <beeshow>
 tag
 ...
 [<beeelse>
 tag
 ...]
 </beeshow>

The "show" command specifies the following command or block of commands to be
executed. It is equivalent to "if (true)" and is trivial in nature. It is included in the design for
the ease of reversing the effect of "hide".

For example, you can prepare two blocks of codes, one for debugging and one for live.
Usually, you put the debug code into the "hide" block and the live code into the "else"
block. When you want to use the debug code temporarily, you can change the "hide"
command to a "show" command. When you finish, change "show" back to "hide" to
resume live operation.

Note: "show" starts an "if" block structure and therefore an "else" or an "elseif" tag can
follow the conditional block.

5.3 Loop

5.3.1 foreach – loop through a variable or a data access result

BEE Script: foreach [maxiter=num] (source [as var]) statement;
or foreach [maxiter=num] (source [as var])
 { statement; ... }

BEE Script User Reference 70

BEE Tag: <beeforeach source var=var [maxiter=num]>
 tag
 ...
 </beeforeach>

"Foreach" loop is commonly used to populate an HTML table. For example, you can put a
template data row within a "foreach" loop, such that in each iteration a data record is
extracted for a display.

It is easier to have it done than said.

Example (Script Form):

database "customer" query="select * from Company
 where Balance > 1000";
display ’<table>\n’;
foreach ((db)customer as custrec)
{
 display ’<tr>\n’;
 display ’<td>{custrec:CompanyName}</td>\n’;
 display ’<td>{custrec:ContactPerson}</td>\n’;
 display ’<td>${custrec:Balance}</td>\n’;
 display ’</tr>\n’;
}
display ’</table>\n’;

Example (Tag Form):

<beedatabase "customer" query="select * from Company
 where Balance > 1000">
<table>
<beeforeach (db)customer var=custrec>
 <tr>
 <td>${custrec:CompanyName}</td>
 <td>${custrec:ContactPerson}</td>
 <td>$${custrec:Balance}</td>
 </tr>\n’;
</beeforeach>
</table>

Parameters

foreach (the source) is the structure to loop through. There are four types of source: var
(default), csv, database, and dbtree.

(var)source

"var" type is the default if no source type is specified. The variable name source is
taken as the name of the array to loop through. (If a single element is specified, only
that element will be used and the loop will be executed only once.)

BEE Script User Reference 71

The elements of the array will be extracted, one in every iteration, and assigned to the
"Loop Variable": "foreach:value" is the element value, "foreach:key" is the element
key. As a short hand, "foreach" (the default element of the loop variable) contains the
same value as "foreach:value".

Example:

foreach (sys%auth)
 display "User’s {foreach:key} is {foreach}
\n";
// Sample display:
// User’s username is jack
// User’s Name is Jack Lee
// User’s Tel is 98765432

The following BEE Variables will be made available within a "var" loop:
("foreach" is to be substituted by the Loop Variable name if one is explicitly specified.)

foreach:key The current key (index) of the Loop Variable

foreach:value The current value of the Loop Variable

foreach: Same value as foreach:value

result%foreach:iteration The iteration count. It contains 1 in the first iteration
and 2 for the second etc.

(csv)source

"csv" type is very similar to the "var" type. The only difference is that instead of the
usual {foreach:key}, {foreach:value} (or {foreach}), the Loop Variable will contain an
array derived from the comma-delimited value list contained in the source element.
(The "key" is insignificant in this case. If you’re interested in its value, it is stored in
result%foreach:key.)

The "csv" type is useful in processing a CSV file.

Example:

foreach ((csv)file%myFile) {
 display "Month: {foreach:#0}
\n";
 display "Income: {foreach:#1}
\n ";
 display "Expense: {foreach:#2}
\n ";
}

(database)dbobj or (db)dbobj

"database" type can be shortened to just "db". The dbobj that follows is from a
previous "database" command, as shown in the example. (Please see the "database"
command for more details about the data access mechanism.)

BEE Script User Reference 72

Data records will be fetched from the last data access via the database object (dbobj),
one record in every iteration, and assigned to the "Loop Variable". The fields are
assigned to individual elements, indexed by the field name.

Example:

foreach ((db)phonebook) {
 display "Name: {foreach:Name}";
 display "Telephone: {foreach:Tel}";
}

The following BEE Variables will be made available within a "database" loop:
("foreach" is to be substituted by the Loop Variable name if one is explicitly specified.)

foreach:fieldname Value of the field in the data record

status%database
also in dbobj%status

Error code of the database retrieval, or 0 if successful

message%database
also in dbobj%message

Error message of the database retrieval, or blank if
successful

result%foreach:iteration The iteration count. It contains 1 in the first iteration
and 2 for the second etc.

(dbtree)dbobj

In this version, a "foreach" loop is the only mechanism to access a "dbtree". (Please
see the "dbtree" command for more details about building and accessing a dbtree.)

The nodes of the dbtree will be fetched from the last data access via the database
object (dbobj), one record (or node) in every iteration, and assigned to the "Loop
Variable". The attributes of the dbtree are assigned to individual elements, indexed by
the attribute name.

Three more values will be made available inside a dbtree foreach loop:
result%foreach:activeness, result%foreach:isparent, and result%foreach:level.

The following BEE Variables will be made available within a "dbtree" loop:
("foreach" is to be substituted by the Loop Variable name if one is explicitly specified.)

foreach:fieldname Value of the field in the dbtree node

result%foreach:activeness The "activeness" value of the current node

result%foreach:isparent 0 if the current node is a leaf node, or 1 if it is a
parent node.

result%foreach:level The number of active parents inclusively between
itself and the root. (Note: The root does not count
because there is no root node.)

BEE Script User Reference 73

result%foreach:iteration The iteration count. It contains 1 in the first iteration
and 2 for the second etc.

var is the Loop Variable. The default Loop Variable is "foreach". Explicitly specifying the
Loop Variable helps to make the code reads better, and also is necessary in a nested loop
to avoid crashing of the Loop Variables if the inner loop use the same Loop Variable as
the outer one.

The Loop Variable is NOT a reference to the source variable being looped through. You
can modify the Loop Variable and use the new value within the loop, and the change has
NO effect on the source variable. Upon the next iteration, the Loop Variable will be
assigned the next value it should receive.

The Loop Variable is an array. If you specify an element as the Loop Variable, the
element part will be ignored and the entire array will be used as the Loop Variable.

maxiter is the maximum number of iterations the loop will execute. It is default to 10000.
Zero means infinity.

5.3.2 for – loop through a series of numeric values

BEE Script: for [maxiter=num] ([var] [from num] [to num] [step num])
 statement;
or for [maxiter=num] ([var] [from num] [to num] [step num])
 { statement; ... }

BEE Tag: <beefor var [maxiter=num] [from=num] [to=num] [step=num]>
 tag
 ...
 </beefor>

Note: While the numeric values (num) are usually integer, BEE can accept floating point
values as well.

"For" loop is used to loop through a series of uniformly increasing or decreasing numeric
values (with an equal interval (step) in between).

Example 1:

for (i from 3 to 10)
{
 display "Children of year {i} please come here
\n";
}

Example 2:

display "Ready ... ";
for (i from 3 to 1) display "{i} - ";
display "Go!
\n";

BEE Script User Reference 74

Example 3:

display "All even numbers between 100 and 110:\n";
for (i from 100 to 110 step 2) display "{i}\n";

In most cases, a "for" loop can be replaced by a "foreach" loop, using no Loop Variable
but specifying the "maxiter" parameter as the number of iterations required.

Example: The following two loops display the same result

for (i from 1 to 3) display "{i}\n";
foreach maxiter=3 { display "{result%foreach:iteration}\n"; }

Parameters

var is the Loop Variable. The default Loop Variable is "for". Explicitly specifying the Loop
Variable helps to make the code reads better, and also is necessary in a nested loop to
avoid crashing of the Loop Variables if the inner loop use the same Loop Variable as the
outer one.

A "for" loop will be "inactive" if the ending condition is satisfied even before the first
iteration. For example, the parameter "from" is larger than "to" and "step" is positive, in
such case the loop is taken as ended before it even starts. The Loop Variable receives a
value ONLY IF at least the first iteration of the loop is executed.

The Loop Variable is NOT a reference to the source variable being looped through. You
can modify the Loop Variable and use the new value within the loop, and the change has
NO effect on the source variable. Upon the next iteration, the Loop Variable will be
assigned the next value it should receive.

The Loop Variable is an array. If you specify an element as the Loop Variable, the
element part will be ignored and the entire array will be used as the Loop Variable.

from is the value assigned to the Loop Variable in the first iteration (unless the "for" loop is
in active, in which case the Loop Variable will not be altered at all.) The "from" parameter
is default to 0.

to is the value that specifies the end of the number series. Before the Loop Variable is
assigned the next number in the series, the number will be checked and if it goes beyond
the "to" value (larger than "to" if "step" is positive or smaller than "to" if "step" is negative),
the loop will exit without assigning the number to the Loop Variable. The "to" parameter is
default to 0.

step is the number used to generate the number series. The first number of the series is
the value of the "from" parameter. Every number after the first one is obtained by adding
the value of the "step" parameter to the previous number (the one contained in the Loop
Variable for the last iteration).

BEE Script User Reference 75

If the "step" value is positive, the number is increasing in every iteration. If the "step" value
is negative, the number is decreasing. The loop will be "inactive" (not executed) if the
series is not expected to terminate (i.e. "from" is larger than "to" and "step" is positive, or
"from" is smaller than "to" and "step" is negative.)

If the "step" value is zero or omitted, it will be taken as 1 if the "from" value is not larger
than the "to" value, or -1 if otherwise. By omitting the "step" parameter, you guarantee that
the number series will be stepping from the "from" value to the "to" value by 1 each term
towards to right direction to terminate. (e.g. "from 1 to 3" will generate 1, 2, 3, and "from 3
to 1 will generate 3, 2, 1.)

maxiter is the maximum number of iterations the loop will execute. It is default to 10000.
Zero means infinity.

5.3.3 w hile – loop w hile a condit ion remains t rue

BEE Script: while [maxiter=num] (condition) statement;
or while [maxiter=num] (condition)
 { statement; ... }

BEE Tag: <beewhile "condition" [maxiter=num]>
 tag
 ...
 </beewhile>

Note: The condition is surrounded by a small bracket and therefore is taken literally. While
you can (and sometimes need to) quote individual values in the condition, please do not
quota the whole condition with double or single quote. Otherwise, the whole condition will
be taken as a string (and will most likely to be evaluated to true unless it is blank or 0).

The "while" loop iterates for as long as the condition evaluates to true.

Please note that variables in condition are evaluated as macros and therefore one should
bear in mind the logical expression syntax. In particular, you need to quote strings as
required. Please see the "if" command for examples.

Example:

var i = 0;
while ({i} < 5)
{
 display ’i=
\n’;
 var i = "(expr){i} + 1";
}
// Sample display:
// i=0
// i=1
// i=2
// i=3
// i=4

BEE Script User Reference 76

Parameters

maxiter is the maximum number of iterations the loop will execute. It is default to 10000.
Zero means infinity.

The following BEE Variables will be made available within a "while" loop:

result%while:istrue Set to 1 if the condition evaluates to true, or 0
otherwise

result%while:condition Set to the condition after variable evaluation

result%while:iteration The iteration count. It contains 1 in the first iteration
and 2 for the second etc.

An interesting remark on the "while" command: The condition is declared once but
evaluated multiple times, each in every iteration. Internally the condition is passed in
through an implicit "absolute" attribute, which means no pre-evaluation will be done until
the execution starts.

5.3.4 cont inue – jump to the beginning of the loop

BEE Script: continue;

BEE Tag: <beecontinue>

Command "continue" brings the execution back to the beginning of the loop ("foreach",
"for" or "while"). Please note that the beginning of the loop means the loop statement, not
the first command of the loop. For example, "continue" will cause the next element in a
"foreach" loop to be fetched, the Loop Variable in a "for" loop to increase, or the condition
to be checked for a "while" loop.

You can only "continue" in a loop. If a "continue" command is "out-of-place", it will be
ignored (and the execution will fall through to the next command after "continue".)

5.3.5 break – ex it the loop and jump to after the end of it

BEE Script: break;

BEE Tag: <beebreak>

Command "break" brings the execution to after the end of the loop ("foreach", "for" or
"while").

BEE Script User Reference 77

You can only "break" in a loop. If a "break" command is "out-of-place", it will be ignored
(and the execution will fall through.)

5.4 Module Calling

5.4.1 funct ion – define a funct ion and it s arguments

BEE Script: function name [name=value ...] { statement; ... }

BEE Tag: <beefunction name [name=value ...]>
 tag
 ...
 </beefunction>

BEE Function is a block of code between the "function" command and the closing curly
bracket. In BEE Tag, it is the block between <beefunction [function_name]> and
</beefunction>. It is not executed at the time of declaration. Instead, the code is executed
at the time of "calling". The "calling" syntax is exactly the same as calling a BEE Script
statement or a BEE Tag, except that the command name is substituted with the function
name.

Unlike in other programming languages, a BEE Function does not return a value
syntactically. Instead, it passes out values through the "result", "status" and "message"
classes. This enables the caller to receive from the function an array, a status code and a
message text respectively in one go.

The argument list is in name-attribute pair format in both the function declaration and the
function calling (unlike in most other languages which put the argument list in a comma-
delimited position sensitive list inside a pair of small brackets.)

The function declaration line does not have to include all the arguments. Those that are
included in the declaration line will be in name-attribute pair format, where each attribute
represents the default value (the value the function takes if the argument is missing from
the calling line).

If there is no default value for an argument, DO NOT include it in the declaration line. In
such case, if the argument is missing from the calling line, it will be undefined. You can
use the "isset" BEE Conversion on the arg%function:name or arg%name, to find out
whether a particular argument is defined or not.

Variables if any in the default value is interpreted from the parent Context at calling time,
instead of at the declaration time. For example:

var a = 123;
func1;

var a = 456;
function func1 x="{a}"
{
 // {arg%x} evaluates to "123"
}

BEE Script User Reference 78

Within the function declaration, arguments are referred to by the variable
arg%function:argname or directly via arg%argname (useful for array passing.) For
example, if function "myfunc" has two arguments: a=1 and b=2, then arg% contains:

arg%function:a 1
arg%function:b 2
arg%function:function myfunc
arg%a 1
arg%b 2

The arg%function variable contains the argument in a non-structural form. For example, if
argument b is an array like b="(array)x=>11,y=>12", arg%function:b will look exactly like
this, without the evaluation of the array:

arg%function:a 1
arg%function:b (array)x=>11,y=>12
arg%function:function myfunc
arg%a 1
arg%b:x 11
arg%b:y 12

All arguments are optional syntactically. That means missing arguments of passing more
of them do not cause syntax problem. Missing arguments will take on the default value. If
no default value is specified for a missing argument, it will be undefined within the function.

Excessive arguments simply stay in the arg% variable list without causing trouble. That
enables the function to work on a variable argument list by scanning the arg%function
variable for argument values.

Arguments are passed by value, not by reference. To pass variables by reference, you
can pass the variable name and declare the variable "parent". (Please see the "parent"
tag.) For example:

function plusOne
{
 parent "{arg%v}";
 var "{arg%v}" = "(expr){{arg%v}} + 1";
}

var a = 2;
plusOne v="a";
// Now {a} is 3

There is an argument named "ignoreerror", which if defined as true, will suppress the error
message if the function to call does not exist. This argument will be passed to the function
as usual if the function exists. The function may use the "ignoreerror" argument to
suppress error message of its own if so required.

BEE Script User Reference 79

Variables within a function are "local", which means that they do not inherit the values they
got before the function call, and any changes to them inside the function would not be
effective outside (except for System Classes.)

Example:

function calculate num1=0 num2=0
{
 var result%function:sum="(expr){arg%num1}+{arg%num2}";
 var result%function:diff="(expr){arg%num1}-{arg%num2}";
}

calculate num1=5 num2=2;
display "Five plus two is {result%calculate:sum}
\n";
display "Five minus two is {result%calculate:diff}
\n";

If the argument names is preceded by an "!", it means the BEE Variable inside the
argument will NOT be evaluated ("absolute" passing).

Example:

var something = "out there";
showme what="{something}"; // Show me out there
showme !what="{something}"; // Show me in here

function showme
{
 var something = "in here";
 display "Show me {arg%what}
\n";
}

If the calling command does not pass in the argument, and the argument name in the
function declaration line for default value is preceded by an "!", the argument value will be
"absolute", which means it will NOT be evaluated in the parent Context. For example:

var something = "out there";
showme1; // Show me out there
showme2; // Show me in here

function showme1 what="{something}"
{
 var something = "in here";
 display "Show me {arg%what}
\n";
}

function showme2 !what="{something}"
{
 var something = "in here";
 display "Show me {arg%what}
\n";
}

Parameters

BEE Script User Reference 80

function specifies the name of the function. It must be an alphanumeric string starting
with a letter. Function name is case insensitive. It will be converted to lowercase
internally.

Within the function declaration, the following BEE Variables are made available:

arg%function:argname The argument value referred to within the function.
Variable arg%function can be scanned to discover
arguments if the function accepts flexible argument
list.

arg%argname The argument values referred to within the function.
It is the same as arg%function:argname except that it
can hold an array. Also, with arg%argname,
argument scanning is via class%list:arg.

result%function The result array referenced from within the function.

After calling the function, the following BEE Variables are made available:

status%functionName The status code returned by
"return status=code;".

message%functionName The message text returned by
"return message=text;".

result%functionName The result array referenced after calling the function.

5.4.2 return – stop execut ing a funct ion and return to the caller

BEE Script: return [status=num] [message=string];

BEE Tag: <beereturn [status=num] [message=string]>

The command "return" stops the function execution and returns to the caller, optionally
with a status code and a message text, which can be accessed by the caller via
status%functionName and message%functionName. (Please see "function".)

Parameters

status specifies a positive number to return to the caller via status%functionName.
Default is 0.

message specifies a message text to return to the caller via message%functionName.
Default is an empty string.

5.4.3 global – dec lare a variable to be from the global Context

BEE Script: global [var];

BEE Script User Reference 81

BEE Tag: <beeglobal [var]>

The "global" command is valid only within a function. It declares that a variable is in the
"global" Context, which means that the variable inherit the value set in the main script, and
any changes to them inside the function will reflect onto the main script.

In another word, "global" variables are references to top level variables.

However, if the function calls another function, the "callee" function would not see the
variables declared global in the "caller" function, unless the "callee" declares these
variables "global" as well.

Example:

function welcome
{
 global sitename;
 var sitename = "Good Buy Shopping Mall";
 var who = "{sys%auth:username}";
 display "Welcome to {sitename}, {who}.
\n";
}

var sitename = "a website";
var who = "a user";
welcome; // Welcome to Good Buy Shopping Mall, johnc.
display "{sitename} got {who}.
\n";
// Good Buy Shopping Mail got a user.

Please note that while variable "sitename" has been set after the function call, changes to
"who" inside the function did not show up in the display.

If the variable name (var) is missing, the whole Context (all variables in the global Context)
will be declared global. (Please use this carefully to avoid polluting the global
environment.)

5.4.4 parent – dec lare a variable to be from the parent Context

BEE Script: parent var;

BEE Tag: <beeparent "var">

The "parent" command is valid only within a function. It declares that a variable is
equivalent to the one in the "parent" (the calling function’s Context), which means that the
variable inherit the value set before the function call, and any changes to them inside the
function survive the exit of it.

In another word, "parent" variables are references to the caller’s variables.

BEE Script User Reference 82

However, if the function calls another function, the "callee" function would not see the
variables declared "parent" in the "caller" function, unless the "callee" declares these
variables "parent" as well.

If the variable name var is missing, the whole Context (all variables in the parent Context)
will be linked with the one of the parent. (Please use this carefully to avoid polluting the
parent’s environment.)

5.4.5 inc lude – inc lude a block of code from a file

BEE Script: include file [ignoreerror=bool];

BEE Tag: <beeinclude "file" [ignoreerror=bool]>

The "include" command includes a file (not URL) into the current position. It must be in the
current directory or a subdirectory under it. Your BEE Hosting Provider may have set up
an "include path" which contains various directories in the order of searching for the
include file. Please check with your BEE Hosting Provider for available include files.

Parameters

ignoreerror indicates whether or not to suppress the error message if the file to be
included cannot be found. If "ignoreerror" is true, no error message will be displayed. The
default is false.

5.4.6 exec – execute a system program

BEE Script: exec prog [args=var] [istream=var] [ostream=var];

BEE Tag: <beeexec prog [args=var] [istream=var] [ostream=var]>

The "exec" command executes a program in the operating system. In fact, the name prog
is merely a "stub" to invoke the necessary system commands to do the job. This "stub"
needs to be installed by the BEE Administrator and is assigned with proper permission,
ownership and CROFT mapping.

The "exec" command will set status%exec and message%exec accordingly.

Parameters

args is a variable that contains an array of command line arguments to be included when
executing the specified file.

istream is a variable that contains an array of input passed as the input stream of the
program to be executed. Each element in the istream array represents a line in the input
stream.

BEE Script User Reference 83

ostream is a variable that contains an array of output passed out from the output stream
of the program after being executed. Each element in the ostream array represents a line
in the output stream.

After calling the function, the following BEE Variables are made available:

status%exec The status code returned by the program after being
executed.

message%exec The last line in the ostream. This is useful for
programs returning only one line. ("ostream" is
usually used when the program returns multiple
lines.)

5.4.7 ex it – stop execut ion and end the w eb page display

BEE Script: exit num [to=string];

BEE Tag: <beeexit num>

The command "exit" stops the execution and returns an exit code to the web server
process (like a CGI script termination with an exit status.) unless the "to" parameter is
specified.

to is used to specify where to exit to. If to="parent", the execution will return to the calling
file (the one that "include" the current file). The default is "system", which means to exit to
the web server process.

5.5 Remote Calling

5.5.1 connector – define a connect ion point for a remote funct ion call

BEE Script: connector name [mode=string] [style=string] [method=string]
[domain=string]
[auth=string];

BEE Tag: <beeconnector name [mode=string] [style=string] [method=string]

[domain=string]
[auth=string]>

The "connector" command encapsulates the remote function call mechanism. Remote
function call enables a client web page to call a function on the server without refreshing
the page.

Two processes are involved: the client calls the server, and the server "calls back" the
client. On the client side, the calling process is indicated below:

The "call" command -> Client Connector -> Server Connector -> Remote function

BEE Script User Reference 84

On the server side, the callback process is indicated below:

Remote function "returns" -> Server Connector -> Client Connector -> Callback function

The "call" command and is invoked in a client script, e.g. JavaScript (and should be in the
BEE Tag syntax because nested <script> tag is not a good idea.) The tag specifies the
URL to the Server Connector page, and the Client Connector used to deliver the call.

The Client Connector then packs the call parameters and sends them to the Server
Connector (specified by the URL). The Server Connector will unpack the parameters and
call the Remote function (specified in the Server Connector itself.)

When the function returns the result, status and message, the Server Connector will pack
them and call the Callback function on the client page via the Client Connector.

The Callback function is in a client script (e.g. JavaScript) which will use the results for its
operation (e.g. display in the proper field or pop up a message box etc.) The Callback
function accepts three parameters: "result" (which is an array that the server function set
up in rsult%function), status and message. They’re also available globally via JavaScript
variable connector_name.result, connector_name.status and connector_name.message.

For example:

Client-side

<script language="JavaScript">

function searchOnClick(fld)
{
 // In JavaScript, we need to use BEE Tag instead of BEE Statement.
 <beecall "http://myserver.com/ws/search.htm" connector="srch"
 key="@fld.value">
 // Arbitrary parameters (like "key") for the remote function allowed
 // "@" indicates that "fld.value" is a JavaScript expression.
}

// The callback function (named after the connector)
function srch(result, status, message)
{
 // The arguments (result, status and message) are returned
 // from the server function.
 // They are also available globally via connector_srch.result,
 // connector_srch.status and connector_srch.message.
 if (status > 0) alert(message);
 else myForm.myField.value = result[’Name’];
}

...
</script>
...

<beeconnector "srch">

BEE Script User Reference 85

Server-side

<script langauge="bee">

connector "findname" mode="server";

function findname
{
 ...
 var result%function = ...;
 return status=... message=...;
}
</script>

The "connector" command will set status%connector and message%connector
accordingly.

Parameters

connector specifies the name of the connector. The connector’s name is not only a
handle to the connector but also the default name of the remote function (mode="server")
or the callback function (mode="client").

The Client Connector is an HTML construct and therefore its name is in the name space
of the client document object hierarchy. It can be accessed by the "connector_name"
name in JavaScript. (e.g. if connector="abc", the object name is connector_abc.)

In particular, three JavaScript variables are made available after the remote call:
connector_name.result (an array containing the result%function of the remote function),
connector_name.status and connector_name.message (which are status%function and
message%function respectively.)

Unlike in the Client Connector, the Server Connector name is not used for any other
purpose (not even in the call command, which calls the URL containing the Server
Connector, not the Server Connector’s name).

mode indicates what the connector does. A Client Connector is located in the client page
for call tags to pass parameters to the remote function. The Client Connector is an HTML
construct. It is hidden unless style="..." is specified that makes it displayable. Displaying
the Client Connector (e.g. by style="") is useful for debugging as you can see what
parameters are being passed and what results are passed back.

Since a Client Connector is a displayable construct (even when it is hidden), it must be put
in the <body> section and not contained in a JavaScript section. (A Client Connector can
exist within a BEE Script section as long as the section is in the <body> section.)

A Server Connector is used in the remote function page to be called. It is translated to an
execution procedure of the remote function and therefore should be the only executable
construct in the function page, but you can add other debugging messages which is to be
showing up on the Client Constructor (if it’s not hidden).

The remote function can be on the Server Connector page or another page included in by
the "include" command. Basically, the remote function can be on any page as long as it is
accessible by the Server Connector.

BEE Script User Reference 86

style specifies the style="..." attribute for the Client Connector HTML construct. Normally,
the Client Connector is a hidden HTML construct, but you can use style="..." to show it.
The simplest way is to use a null style (e.g. style=""), which will show the connector as a
display box of default size at where the connector is located on the client page. Other
style attributes can be used to, say, relocate the connector box or show different
background or font etc.

domain is a security feature for connecting across web hosts. e.g. if you call a remote
function on server.mydomain.com from a web page on client.mydomain.com, you need to
specify domain="mydomain.com" in the Server Connector (at server.mydomain.com). On
the client side, the "call" command needs to have the same domain="mydomain.com"
parameter as well. The "domain" parameter is optional if both the server and the client is
on the same web host.

auth if set to true indicate that the server connector is for BEE Remote Authentication.
This parameter contains a secret string that the caller needs to provide in order to
authenticate remotely. The "auth" parameter is effective only for a server connector
(mode=server). Please refer to the "call" command for details.

Note: In the current implementation of BEE, the client connector is in fact an <IFRAME ...>
tag. Parameters other than the above will be used as additional attributes of the IFRAME.
A typical use is to include a src="/blank.htm" attribute to avoid browser complaining about
an SSL page containing non-secure parts (the unspecified IFRAME content).

5.5.2 call – call a remote funct ion via a URL

BEE Script: call [location=URL] [operation=string] [connector=string]
[callback=string] [method=string] [window=bool]
[domain=string] [auth=string]
[name=value ...];

BEE Tag: <beecall [location=URL] [operation=string] [connector=string]

[callback=string] [method=string] [window=bool]
[domain=string] [auth=string]
[name=value ...]>

The "call" command initiate a "remote call" to a function (the "server function") in another
page (the "server page") indicated by the URL parameter. This command is useful in
performing an operation at or retrieving data from the server without refreshing the current
page.

The "call" command must run from a client script (e.g. JavaScript) environment. For
example:

<script language="JavaScript">
<beecall "http://www.someserver.com/serv.htm" connector="testcon">
</script>

BEE Script User Reference 87

The server function is indicated by the "operation" parameter and needs to be accessible
from the server page indicated by the "location" parameter. The server function is
operating under the Scope of the server page, not the client page.

The result (the result%function array) of the server function will be passed back to a client
script (e.g. JavaScript) on the client page, so that the script and handle the result without
refreshing the client page.

Two Connectors, one for the client page and one for the server page, are required to
facilitate the communication. Please see the "connector" command for more details.

Calling a function on another site

If the server page happens to be on a different website (defined as a collection of URL
prefix of the same "owner" as mentioned in the "CROFT" section), it will use the Scope
(authentication and data access) of the "server site", not the "client site". This mechanism
not only provides security for the server function but also bridges the data access gap of
the two sites.

For example, let’s suppose Site A needs to access a piece of information on Site B. The
client page on Site A, a.mydomain.com/caller.htm, calls the server page on Site B,
b.mydomain.com/callee.htm. The connector at callee.htm will invoke a server function
(which is just an ordinary function on Site B) and pass the result back to caller.htm on Site
A via JavaScript.

Access control

To the server page, the request comes from the visitor’s browser, not from the client page.
However, the sys%client:referrer variable still show the client page address, and therefore
can be used by the server function to restrict access from only the client page it allows.

Since the server function works under the scope of the server function, it can restrict
access based on visitor’s login and access level. That means the visitor needs to have
logged into the server site already before gaining access by means of the client site. This
way, the server site security will not be compromised by granting access via the client site.

If SSL is available on the callee site, the caller can include "https://" in the callee URL to
indicate a secure submission.

Calling another web host

At the moment, due to a security restrictions on Internet Explorer, BEE needs to restrict
the calling to between two pages of the same host (e.g. www.mydomain.com/client.htm
and www.mydomain.com/server.htm), and between two pages of two different hosts in the
same domain (e.g. client.mydomain.com/a.htm and server.mydomain.com/b.htm, both in
the domain of mydomain.com). In the later case, the "domain" parameter is required on
both the client "call" command and the server "connector" command.

BEE Remote Authentication

BEE Script User Reference 88

The Remote Calling machenism of BEE can be used to obtain (or transfer) authentication
information from the server site. For example, if Site A and Site B are two closely related
websites (e.g. two departments of the same company), how can we allow users who have
logged into Site B to automatically have access to Site A? The answer is to set the "auth"
parameter in the "call" command to invoke a server function via a "server" connector with
"auth" set as well.

To begin, Site A initiates an authentication call to Site B. Since there is no session
information in the call, the authentication server connector on Site B refreshes the caller
page on Site A with the session information (which come from the scope of Site B in which
the server function is running in). Site A after being refreshed initiates a second
authentication call to Site B, this time with the session information.

Once the secret string is confirmed valid, the server function will be called. It is to return
the sys%auth array via result%function. These are usually the attributes of the
authentication information, and are optional. In fact, you can have a null function without
returning anything, but the function still needs to be there. If you want to fail the
authentication, you can return a non-zero status, and the connector will not pass any
authentication information to the client (e.g. return status=1 message="Not allowed";).

Here is an example:

connector myauth mode="server" auth="mysecret";

function myauth
{
 var result%function = "(var)sys%auth";
}

Programmers do not need to concern the above details. The BEE Remote Authentication
machenism is encapsulated in the "auth" parameter of the "call" command and the server
"connector" command on the server page. Once these parameters are specified,
everything else will happen automatically.

The "call" command will set status%call and message%call accordingly.

Parameters

location specifies the URL of the server page. If the location URL is not specified, the
Client Connector will still prepare the parameters but stop just before calling. For example,
<beecall operation=myfunc connector=myconn a=1 b=xyz> (with a style="" in the
connector to make it visible) will show the calling sequence in a small window at where the
connector is without actually calling the server function. This is useful to debug the
parameters without they being overwritten by the server results.

operation specifies the name of the server function (at the server page). The default is
the name of the connector.

connector specifies the name of the connector used in the remote call.

BEE Script User Reference 89

callback specifies the name of the callback function (client script such as JavaScript).
The default value is the name of the connector (in which case, you need to name your
callback function the same as your client connector.) If "auth" is set, "callback" specifies a
URL to callback with the session information. In this case, the default is the URL of the
calling page itself (i.e. {sys%url:page} of the calling client).

method specifies the mechanism of "calling" (submitting the request from the client to the
server). It is in fact the "method" attribute of the <form> tag used internally by the "call"
command. The value is either "get" or "post". The default is "post". (Sometimes the
"post" method may cause problem if the access to the server page is somehow redirected.
It is recommended to use the default first and use method="post" only if it does not work
without.)

formattr specifies extra attributes, if any, of the <form> tag used internally by the "call"
command.

window indicates whether the connector will open a separate window on the browser to
deliver the call. By default, the Client Connector will deliver the call through a hidden
<IFRAME ...>. You may set this parameter to true if you want the call delivered via a
separate visible window. This is useful if you want to observe the server connector in
operation, for example, when the server does show some display. This is also used if the
call is delivered when the client page is unloaded (for example to save something to the
server). In this case, the hidden <IFRAME ...> will close as soon as the client is closed,
killing the server connector process. Setting "window" to true will allow the server
connector keep running even after the client is closed. The Default of the "window"
parameter is false.

domain is a security feature for connecting across web hosts. e.g. if you call a remote
function on server.mydomain.com from a web page on client.mydomain.com, you need to
specify domain="mydomain.com" in the "call" command. On the server side, the
"connector" command needs to have the same domain="mydomain.com" parameter as
well. The "domain" parameter is optional if both the server and the client is on the same
web host.

auth if set to a secret string indicates a BEE Remote Authentication call. In this case, the
"callback" parameter contains the URL to call back. The secret string needs to be
acceptable to the connector on the server side.

name is not really a fixed parameter. The name name can be anything (except for the
parameter names above) and can be more than one. They are used to pass parameters
to the remote function (as indicated by the Attribute Name-Value Pairs in the syntax
description). If a value is preceded by an "@" sign, the rest of the content indicates a
JavaScript expression (instead of a BEE expression.)

5.5.3 xmlparse – parse an XML document

BEE Script: xmlparse string [xml=class] [index=class];

BEE Tag: <beexmlparse string [xml=class] [index=class]>

BEE Script User Reference 90

The "xmlparse" command parse the XML document contained in the string and create an
XML class variable and an optional index class variable. These two variables should not
be accessed directly. They should be passed to an XML object which encapsulate the
XML operation.

In fact, the "xmlparse" command itself should not be directly accessed as well. The
constructor of the XML object (contained in "common/xml.bs") will parse the XML
document for you.

The "xmlparse" command will set status%xmlparse and message%xmlparse accordingly.

Parameters

xml specifies the name of the "xml" class, which contains in each variable an XML
construct, such as XML tag, element and CDATA. The elements of such variable is the
meta data and attribute of the XML construct. The default of the "xml" parameter is "xml".

index specifies the name of the "index" class, of which each variable correspond to an
XML tag. The name is the XML tag name, and the elements are keys that can be used to
address the "xml" class as variable name for all occurrence of the XML tag. (The "index"
class is optional.)

5.6 Authenticat ion

5.6.1 access – define an access cont rol block

BEE Script: access (accessControlSpec) statement;
 [else statement;]
or access [(accessControlSpec)] { statement; ... }
 [else { statement; ... }]

BEE Tag: <beeaccess [accessControlSpec]>
 tag
 ...
 [<beeelse>
 tag
 ...]
 </beeaccess>

Note: The accessControlSpec is surrounded by a small bracket and therefore is taken
literally. So please do not quota it with double or single quote or the quotation marks will
be taken literally as part of the value.

Example 1:

access display ’Hello {sys%auth:username}’;
else display ’Please login first’;

Example 2:

access (admin) {

BEE Script User Reference 91

 // ... display the logout button here
 display ’Go to Admin Site’;
} else { // Not admin user
 access (at most public) {
 display ’Please login first’;
 // ... display the login form here
 } else { // higher than public
 access (@friendly.site.com) display ’Hi Pal’;
 else {
// Stop if it is user "john" of realm "myown.site.com"
 access (john@myown.site.com) exit;
 else display ’Welcome my dear member’;
 }
 }
}

The "access" command defines a block that is executed only when the current session
matches the accessControlSpecification (ACS) enclosed in the small bracket.

There are various authentication settings that you can select when your site is established,
such as the password encryption scheme, the location and access method of the user
table and how to map the information on that table.

The concept of "realm" (a group of users who share the same name space) is built into the
BEE platform and implemented in CROFT. You can use a field in the user table to
indicate the realm (e.g. the Department field of the Staff table), or you can have physically
separated tables for different realms.

For example, you can allow the sales staff of a branch office in Melbourne to login via a
realm called "melsales". When someone logs in using, say, "matthew@melsales",
CROFT will check the Auth table at the Melbourne branch server to verify the password
for "matthew". You can use the "access" command to grant/restrict access of such
"affiliate" member.

The "Auth" table can locate at any server as long as the BEE server where your web page
is running from have access to the "Auth" table via the Internet. This allows the end user
to run their own authentication system in house (or in any facilities they choose).

The "Auth" table can in fact be a scheme File. For example, if you establish the website
authentication with @itguys realm pointing to the "staff" scheme file and have

john:Password=abc
john:AccessLevel=2
john:Name=John Lee

then "john@itguys" can login with password "abc" and gain member access. In fact, you
may have more than one realms in the same authentication scheme file. For example:

mary@marketing:Password=def
mary@marketing:AccessLevel=2
mary@marketing:Name=Mary Young

BEE Script User Reference 92

Of course, you will need to establish the realm @marketing to point to the "staff" scheme
file as well. However, extra care is needed in this case. If no realm is specified in the
login, only entries without realm will match. If a realm is specified, entries with the
specified realm will be searched first, and if there is no match, entries without realm will be
searched. In the above example, "mary" (without realm in the login) will get no match,
while "john@marketing" and "john@marketing" will both match the entry "john".

It is recommended to use separate authentication scheme files for different realms to
avoid confusion. In such case, there is no need to put realm specification in the entries.

For flexibility in integration, the Auth table can have any attributes of any arbitrarily names.
All attributes is accessible via the sys%auth:attribute variable. CROFT recognises six
attributes in order to operate the authentication process. Three CROFT attributes are for
user identification: Username, Password and Realm. There are another three for session
control: Access Level, Active and Expiry. CROFT requires at least the Username and
Password. All the other four can be omitted in the Auth table without affecting CROFT.

x� If Realm is omitted from the Auth table, CROFT will take the whole table to be from a
single pre-defined realm (usually blank). If any of the three session control attributes
are omitted, a default value needs to be entered into CROFT. For example, #2 for
Access Level if all users in the Auth table has Member access; #1 for Active if all are
active; and #0 for Expiry if none will expire.

User Identification Attributes:

Username: login user ID

Password: password (encrypted with a scheme chosen at set up time)

Realm: an optional suffix following the user ID (ie user@realm) for user grouping and
access control

Session Control Attributes:

AccessLevel: access privilege (a common name mapping is public=0, affiliate=1,
member=2, vip=3, editor=6, manager=8, admin=10; Please see note.)

Active: whether the user record is effective (non-zero means active)

Expiry: timestamp indicating when the user record is deactivated (0 means never)

Note on AccessLevel: Besides the "public" and "affiliate", all other Access Levels are assigned largely arbitarily, but
it is not recommended to change as many library applications or functions assume such mapping. The "admin"
access level should always been highest, and its value "10" is entered into the Auth table in CROFT. The
"manager" access level is used by the User Management application in the Administration site; the "editor" access
level is used by the Portal Object to allow menu editing and setting changing. Only the "admin" user can edit the
site contents (TEA). If you want to allow the "editor" user to do TEA editing, you must have the scheme setting
"scheme%AllowEdit=6".

Parameters

access specifies the ACS (Access Control Specification). Default is "higher than public".

BEE Script User Reference 93

The ACS comes in two different forms:

Form 1: [relation][accessLevel]

Specifies a range of access level at which the user can access the controlled block
that follows.

relation is default to ">=". accessLevel can be the access level number as well. The
default is "member".

Here’re some examples:

higher than affiliate
at least vip
over 2

Common expression can be used to a certain extend. The followings are valid
relational words:

less than
below
under
greater than
above
over
equal to
same as
at least
at most
not ...
lt
le
eq
ne
ge
gt

All these will be translated to the proper mathematical symbol. e.g. less than is < and
at least is >= etc.

Form 2: [user]@[realm]

Specifies a user or a group of users who can access the controlled block that follows.
The "@" sign is compulsory (even if the website do not use the "realm" feature). If
user is missing, it means all users in the realm. If realm is missing, it means the
"blank" realm.

Note: The "Realm Character" is defined in scheme%RealmChar. The default is "@".
If you use email address as login name and do not want to confuse the system into
taking the domain as realm, you may define an impossible character in
scheme%RealmChar.

Here’re some examples:

BEE Script User Reference 94

@marketing All users in realm "marketing"
john@ User "john" in the blank realm
mary@billing User "mary" in the realm "billing"

In particular, "not" means to exclude the user or group of users from accessing. e.g.
"not @staff" means NOT in the realm "staff".

After the "if" command is executed, the following BEE Variables are made available:

result%access:isallowed Set to 1 if allowed access, or 0 otherwise

5.6.2 login – authent icate a session w ith username and passw ord

BEE Script: login [username=string]
 [password=string]
 [realm=string]
 [signup=num]

BEE Tag: <beelogin [username=string]
 [password=string]
 [realm=string]
 [signup=num]>

The "login" command authenticates the session so that subsequent "access" command
and "sys%auth" variables will operate on the new session.

All parameters got proper default value from the login form (via the sys%form variables.)
So "login" mostly appears to be parameter-less command unless your login form got field
names different from "username", "password" and "realm". ("realm" is optional as login
will extract the part of the username after the "@" sign if any as the "realm" specification.
The "@" is called the Realm Character, which can be redefined in scheme%RealmChar.)

If both "username" and "password" are both evaluated to blank (including their default
values from the form entry), no login function will be performed, status:login will be set to 0,
and message:login will be set to blank. This design is to avoid a login error when the user
first open the page.

Here is a typical way to handle a "member-only" page:

Example (forms submit back to the same page):

if (’{sys%form:Submit}’ == ’Login’) login;
elseif (’{sys%form:Submit}’ == ’Logout’) logout;
display ’{message%login}’;

access {
 display ’<form method="post" action="{sys%url:page}">’;
 display ’<input type=submit name=Submit value=Logout>’;
 display ’</form>’;
 // Member-only info here
} else {

BEE Script User Reference 95

 display ’<form method="post" action="{sys%url:page}">’;
 display ’Username: <input type=text name=username>
\n’;
 display ’Password: <input type=password name=password>
\n’;
 display ’<input type=submit name=Submit value=Login>
 display ’</form>’;
}

The "login" command will set status%login and message%login accordingly.

Parameters

username specifies the username used to access the Auth table. It is default to the value
of the form entry field named "username" (i.e. {sys%form:username}). If "username"
evaluates to blank but "password" is non-blank, "login" will give an error. If both
"username" and "password" evaluate to blank, "login" will do nothing and return no error.

If "username" evaluates to a value that contains an "@" sign, the part after the "@" will be
used as "realm". Realm specified this way (after the "@" sign) takes precedence over the
"realm" parameter.

password specifies the plain text version of the password that is used in the
authentication process to match up with the one (encrypted or not) in the Auth table. It is
default to the value of the form entry field named "password" (i.e. {sys%form:password}).
If "password" evaluates to blank but "username" is non-blank, "login" will give an error. i.e.
blank password is not allowed. If both "username" and "password" evaluate to blank,
"login" will do nothing and return no error.

realm specifies the realm if the "username" value contains no "@" sign.

After the "login" command is executed, the following BEE Variables are made available:

status%login Error code or 0 if successful
1: user already logged in
2: no username is entered
3: no password is entered
4: username is incomplete
10 or above: Error code from the BEE system

message%login Error message or blank if successful

5.6.3 logout – unauthent icate a session

BEE Script: logout;

BEE Tag: <beelogout>

The "logout" command "unauthenticates" the session so that subsequent "access"
command and "sys%auth" variables will operate on a public session.

After the "logout" command is executed, the following BEE Variables are made available:

BEE Script User Reference 96

result%logout:user The full username that was logged out (with @realm
if applicable)

5.7 Data Access

5.7.1 database – access the database and prepare the result

BEE Script: database dbobj [name=string] [query=string]
 [action=string] [matrix=class]
 [seek=[num[,num[,num]]]]
 [dbid=name]

BEE Tag: <beedatabase dbobj [name=string] [query=string]
 [action=string] [matrix=class]
 [seek=[num[,num[,num]]]]
 [dbid=name]>

In BEE, there is no initialisation or connection to the database before data access
operation and no closing or disconnection from the database afterwards. The database
can locate at any server as long as the BEE web server has access to the database via
the Internet. Also, there are no platform-dependent database operations. All the
dependent operations are handled by the system transparently and are completely
concealed from the program code.

When writing database access code, you go straight into the data access operation, which
is usually a one-liner, then you retrieve the results for display or further processing. This
design helps to simplify your web page and reduce risk of error by eliminating the
database connection process from your code. It is also more secure way of data access
as BEE websites can access only the database predefined for it at set up time.

At the moment of writing, BEE supports:

BEE VirtualBase (flat file)
MySQL
mSQL
Microsoft SQL Server
Oracle 8
ODBC
InterBase
PostgreSQL
Sybase

In the BEE architecture, database operation is a big topic and needs to be covered in a
separate section. Please see "Database Operation" for details.

The "database" command will set status%database and message%database accordingly.

Parameters

BEE Script User Reference 97

name is a global name uniquely identifying the data access result. This is used internally
by the system to avoid resource allocation conflict. It is usually omitted so that the system
will generate a unique name for you. If you need to access the "name" value, it is in
{dbobj%name}.

Explicitly specifying the name parameter is useful when you want to access the query
information stored in the "session" class. You need to use a constant name to guarantee
that you get back the same "session" variable. However, BEE store a company of the
query information in "session%database" anyway. So you need to define a constant
name across sessions only if you have more than one database object to carry across.

Please note that this "name" parameter has nothing to do with the name of the underlying
database that the operation is binding to. (The script does not contain any knowledge
about the underlying database.)

query is an SQL query statement that operates on the underlying database. For data
retrieval, the record set can be accessed via the "database" data type in the "get"
command or in a "foreach" loop. If "query" is specified, parameters "action" and "matrix"
will be ignored.

action is an advanced query method that draws input arguments from the matrix and the
database object (named by dbobj in the "database" command). Besides data access,
"action" can also be used to manipulate the "BEE VirtualBase" table ("create", "load",
"unload", "showcreatetable" and "showinsertinto") and roll-back record retrieval ("push").

If the value of "action" is preceded by an "!", the operation will stop after deriving the SQL
statement but before executing it. The resulting SQL statement will be stored in
dbobj%query as usual. This is useful in debugging or testing to let the programmer to
check that the SQL statement is right before applying it physically to the database.

Parameter "action" is a big topic and deserves a separate section. Please see "Database
Action".

(Parameter "action" is ignored if parameter "query" is specified)

matrix specifies a class of variables each contains a data row, indexed by a key value.
e.g. "matrix%12:Tel" represent the "Tel" column of row "12" (the row that is indexed by
"12", not the 12th row.) The list of keys (the variable names) are held in dbobj%keys, and
the list of fields (the element names) in dbobj%fields. The default value of "matrix" is
"matrix".

Please note that like any object reference, the matrix class is locally referenced unless
explicitly declared as "global" or "parent".

(Parameter "matrix" is ignored if parameter "query" is specified)

seek specifies the position in the retrieved record set where the record fetching will start.
The default is "seek=1", which means to start fetching from the first record. "seek=last",
"seek=end" and "seek=bottom" all mean that the fetching will get the last record.
"seek=random" will start the fetching on a record randomly selected between the first one
and the last inclusively. Subsequent fetches after "seek=random" will remain sequential
following the randomly selected record.

BEE Script User Reference 98

The position in parameter "seek" can be optionally followed by two more values: "records
per page" and "pages per block". This is useful for paging the display of the record set,
and is described in "Paging the Data Display". (If either of these two values are specified,
the "seek" position will be automatically adjusted to the first record in the page.)

dbid is an identifier to the database if there are more than one database associating with
the URL of the web page where the request is originated from. This parameter is rarely
used even when you have different database to access, because the URL is sufficient to
identify the database to use. It is only when you want to access multiple databases from
the SAME page that you need to use "dbid" to indicate which one to use. (The value of
"dbid" is an identifier defined at set up time of the website, NOT the name of the underlying
database.)

After calling the function, many BEE Variables are made available. Please see "Database
Variables".

5.7.2 dbt ree – convert a database result into a non-c ircular t ree

BEE Script: dbtree dbobj [root=string] [self=string] [parent=string]
 [maxlevels=num] [maxnodes=num] [withroot=bool];

BEE Tag: <beedbtree dbobj [root=string] [self=string] [parent=string]
 [maxlevels=num] [maxnodes=num] [withroot=bool]>

The "dbtree" command does not generate any output. It only generates an internal
structure for the specified database object. This structure can only be accessed via a
foreach loop of type "dbtree".

A dbtree is a non-circular tree structure converted from a database query result. The
typical use of a dbtree is in a site-map style hierarchical menu. The minimum
implementation is a VirtualBase table with two fields: Self and Parent. "Self" is a unique
identifier of the menu item and "Parent" is the upper level menu the item belongs to, which
must exist as a "Self" node in another item. It is like a file system directory structure.

In this context, we follow the common convention in describing "node", "parent", "child",
"sibling", "leaf" and "root". (See Terminology for more details).

Each record in the record set corresponds to a node in the dbtree. The node record has
at least one unique key field (of which the name is specified in the "self" parameter) and a
parent pointer field (of which the name is specified in the "parent" parameter.) Circular
relations will be detected and removed.

The root node does not necessarily exist as a record (virtual root), but the sibling relation
for all children nodes having the same parent pointer still holds.

A record set may contains several roots (or virtual roots), each holds a disjoint dbtree in
the same record set. In this case, you may specify root="..." to indicate a sub-dbtree
formed by all siblings of that parent.

BEE Script User Reference 99

The root will not be included in the dbtree result unless withroot="1". If the root does not
exist in the record set but withroot="1", a faked root node will be generated in the dbtree
result (not in the record set). The faked root (if there’s one) has only the "self" field
containing the virtual root pointer and the "parent" field being null.

Example:

In the following example, "indent" is a variable containing spaces and the "lead" strings are
the symbols you display before the node to indicate its type. e.g. ">" (or >) implies a
non-opened parent etc.

Please note that the "lead" variable is indexed by a two digit number, the first one being
the "activeness" and the second one "isparent". There’re 4 possible values for
"activeness" (0, 1, 2 and 3) and 2 possible values for "isparent". Zero "activeness" should
not be shown. So you can specify 6 different symbols.

(For the sake of an example, the "self" node is the "Code" field in the table, and the
"parent" node is the "Parent" field in the table, which is the default.)

var indent = ". ";
var "lead" = "(array)10=>o, 11=>>, 21=>v,
 30=>o,
 31=>v";
database "db" query="select * from Menu";
dbtree "db" self="Code" active="form%pagecode";
foreach ((dbtree)db as node)
{
 if ({result%node:activeness} == 0) continue;

 display "{indent|repeat:{result%node:level}}";
 display
"{leadchar:{result%node:activeness}{result%node:isparent}}";
 var href = "{sys%url:page}?pagecode={node:Code}";
 display ’{node:Name}’;
 display ’ ({node:Description})
’;
}

Terminology:

Every "node" in the tree can have zero or more "children" nodes, which in turn may have
their own children nodes. Children nodes with the same parent node are called "sibling"
nodes of each other. Nodes with no children nodes are called "leaf" nodes; nodes with
children nodes are called "parent" nodes; the node with no "parent" node are called the
"root" node (usually unique in a tree).

Parameters

root specifies the root node that the dbree is built under. The default is blank.

BEE Script User Reference 100

active indicates the active node in the dbtree. By specifying the "active" parameter, you
assign an activeness value to each node "related" to the active one in the following
scheme:

3 CURRENT: The active node itself

2 OPEN: An active parent, i.e. a parent of the active node or a parent of
another active parent. All the active parents form a path from the root to the
active node.

1 CLOSE: An active sibling, i.e. a sibling of the active node or an active
parent. All the active siblings form an active tree that resumbles a function
menu hierarchy.

0 None of the above. (Nodes with zero activeness should not be shown.) If
"active" is blank, the activeness of all nodes will be set to 0.

self specifies the name of the field which contains the unique key of the node. The default
is "Self".

parent specifies the name of the field which contains the parent pointer of the node. The
default is "Parent".

maxlevels specifies the maximum number of levels the process will go down to. This
restriction is introduced to avoid endless looping in ever deeper search for more levels due
to a fault in the record set. The default is 10.

maxnodes specifies the maximum number of nodes the process will take from the
database. This restriction is introduced to avoid resource draining problem with a huge
record set. The default is 1000.

withroot indicates whether to include the root into the dbtree. To include the root, please
enter "yes", "on", "true", or a positive number. If the root does not exist in the record set
(virtual root), a faked dbtree node will be generated. To exclude the root (the default
case), please enter "no", "off", "false", or 0.

After calling the function, the following BEE Variables are made available:

status%database Error code of the dbtree operation, or 0 if successful

message%database Error message of the dbtree operation, or blank if
successful

The followings are available only in the "foreach ((dbtree)... as var) { ... }" loop:

result%var:activeness The "activeness" value of the current node. (Please
see the "active" parameter.)

result%var:isparent 0 if the current node is a leaf node.
1 if the current node is a parent node.

BEE Script User Reference 101

result%var:level The number of active parents inclusively between
itself and the root. If "withroot" is 1, the root is at level
0 and all its children nodes are at level 1; if "withroot"
is 0, there is no root, and all top level nodes are at
level 0. In another word, you always have level 0 in a
dbtree.

5.8 Socket

Sockets are endpoints for communication between processes or hosts.

The most common model of communication is the client-server one, in which the "server"
process or host is running all the time, waiting for requests to serve, and the "client"
process or host sends requests to the server and get the reply from it for further
processing.

The typical live cycle of a server socket is create-bind-listen-accept-read-write-close, while
that of the client is create-connect-write-read-close. The status%socket and
message%socket variables will be set accordingly after each operation. However, in the
following examples, the status and message variables are ignored for simplicity.

A Typical Server Process:

socketcreate serverSock;
socketbind serverSock address="the.server.com" port=100;
while (true) {
 socketlisten serverSock;
 socketaccept serverSock newsocket=msgSock;
 socketread msgSock;
 display "Request: {msgSock%read:content}
\n";
 if (’{msgSock%read:content}’ == ’quit’) break;
 socketwrite msgSock content="I heard: {msgSock%read:content}";
 socketclose msgSock;
}
socketclose serverSock;

A Typical Client Process:

socketcreate clientSock;
socketconnect clientSock address="the.server.com" port=100;
socketwrite clientSock content="hello world";
socketread clientSock;
display "Reply: {clientSock%read:content}
\n";
socketclose clientSock;

BEE Script User Reference 102

5.8.1 socketcreate – create an endpoint for communicat ion

BEE Script: socketcreate socketObj
 [domain=string] [type=string]
 [protocol=string] [listen=bool];

BEE Tag: <beesocketcreate socketObj
 [domain=string] [type=string]
 [protocol=string] [listen=bool]>

The "socketcreate" command creates an endpoint for communicating with another
process or host. It does not do the actual communication but to specify the property of the
socket for subsequent socket commands. These properties are stored in the socketObj
object.

The "socketcreate" command will set status%socket and message%socket accordingly.

Parameters

socket (the socketObj) is the name of the object holding the socket’s properties.

domain is one of the followings:
const%socket:AF_INET (default): IPv4 Internet based protocols
const%socket:AF_UNIX: Local communication good for Interprocess Communication

type is one of the followings:
const%socket:SOCK_STREAM (default): Sequenced, full-duplex byte stream (for TCP)
const%socket:SOCK_DGRAM: Datagrams (connectionless for UDP)
const%socket:SOCK_RAW: Raw network protocol access (used to construct any protocols like ICMP)
const%socket:SOCK_SEQPACKET: Sequenced, two-way for datagrams (entire packet in each read)
const%socket:SOCK_RDM: Reliable Datagram layer (order not guaranteed, likely not implemented)

protocol is one of the followings:
const%socket:SOL_TCP (default): Transmission Control Protocol
const%socket:SOL_UDP: User Datagram Protocol
const%socket:SOL_ICMP: Internet Control Message Protocol

listen is the port number on which the socket is opened to accept connection from other
processes or hosts. If listen is specified, the "domain", "type" and "protocol" parameters
will be ignored. "domain" will be taken as const%socket:AF_INET and "type" will be taken
as const%socket:SOCK_STREAM. ("listen" is usually used is a "server" process.)

5.8.2 socketbind – bind an address and a port to a socket

BEE Script: socketbind socketObj address=string port=integer;

BEE Tag: <beesocketbind socketObj address=string port=integer>

The "socketbind" command binds an address and a port number to an existing socket. It
does not do communication but to specify the address and port for subsequent socket
commands. These properties are stored in the socketObj object.

BEE Script User Reference 103

The "socketbind" command will set status%socket and message%socket accordingly.

Parameters

socket (the socketObj) is the name of the socket to be bound.

address is the address that the socket will communicate on. For AF_INET domain, it is
an IP address, or a host name resolvable to an IP via the DNS (Domain Name Service).

port is a service identifier. e.g. SMTP (port 25) for e-mail and HTTP (port 80) for the web. It may be
specified as a service name recognisable by the system.

5.8.3 socket listen – listen (w ait) for a connect ion on a socket

BEE Script: socketlisten socketObj [backlog=integer];

BEE Tag: <beesocketlisten socketObj [backlog=integer]>

The "socketlisten" command is usually used by a server process. This command
"registered" its interest to the system on connections made to the address and port
specified in a previous "socketbind" command. It is usually followed by a "socketaccept"
command to wait for and accept the new connection given to the process by the system.

The "socketlisten" command will set status%socket and message%socket accordingly.

Parameters

socket (the socketObj) is the name of the socket to be suspended for "listening".

backlog is the maximum number of connections allowed to be queued before the process
accept the first connection (see "socketaccept"). The default is 5.

5.8.4 socketaccept – accept a connect ion on a socket

BEE Script: socketaccept socketObj [newsocket=string];

BEE Tag: <beesocketaccept socketObj [newsocket=string]>

The "socketlaccept" command is usually used by a server process. This command accept
a connection from the queue (see "socketlisten") and create a new socket for that
connection. After the connection is processed, the new socket should be closed and the
original socket should be "listened" to again.

If there are multiple connections in the queue, the first one will be "accepted". If there are
no connections in the queue, the process will be suspended waiting for the arrival of a new
connection.

If the socket is set to non-blocking (see "socketcontrol") and there is no connection in the
queue, the process will return an error.

BEE Script User Reference 104

The "socketaccept" command will set status%socket and message%socket accordingly.

Parameters

socket (the socketObj) is the name of the socket where the new connection is to be
accepted.

newsocket is the name of the new socket object to be created for the process to
communicate with the process or host making the connection. The address and port of
the connection (of the server process) can be obtained from newSock%address and
newSock%port respectively, where newSock is the value of the "newsocket" parameter.
The address and port of the (client) process and host making the connection can be
obtained from newSock%remote:address and newSock%remote:port respectively.

5.8.5 socketconnect – make a connect ion on a socket

BEE Script: socketconnect socketObj address=string port=integer;

BEE Tag: <beesocketconnect socketObj address=string port=integer>

The "socketconnect" command initiates a connection to a remote (server) address and
port via the socket. This command is usually used by a client process.

The "socketconnect" command will set status%socket and message%socket accordingly.

Parameters

socket (the socketObj) is the name of the socket to connect.

address is the address that the socket is making connection to. For AF_INET domain, it
is an IP address, or a host name resolvable to an IP via the DNS (Domain Name Service).

port is a service identifier. e.g. SMTP (port 25) for e-mail and HTTP (port 80) for the web. It may be
specified as a service name recognisable by the remote system.

5.8.6 socket read – read a message from a socket

BEE Script: socketread socketObj [maxlength=integer];

BEE Tag: <beesocketread socketObj [maxlength=integer]>

The "socketread" command reads a message from the socket. The content and length of
the read message are stored in socketObj%read:content and socketObj%read:length.

In order to read all bytes in the message, you may need to implement the "socketread"
command as a while loop:

socketread mySock;
var msgRead = "";

BEE Script User Reference 105

while ({mySock%read:length}) {
 var msgRead = "{msgRead}{mySock%read:content}";
 socketread mySock;
}
// Now msgRead contains the message read from the socket.

The "socketread" command will set status%socket and message%socket accordingly.

Note: "socketread" is binary safe.

Parameters

socket (the socketObj) is the name of the socket to read.

maxlength is the maximum number of bytes that the command will read. If there are
more to read beyond this limit, the excessive data will be left unread until the next
"socketread" command.

5.8.7 socketw rite – w rite a message to a socket

BEE Script: socketwrite socketObj [content=string] [maxlength=integer];

BEE Tag: <beesocketwrite socketObj [content=string] [maxlength=integer]>

The "socketwrite" command write a message to the socket.

The "socketwrite" command will set status%socket and message%socket accordingly.

Note: "socketwrite" is binary safe.

Parameters

socket (the socketObj) is the name of the socket to write.

content is the content to be written, which can be subsequently accessed via the
socketObj%write:content variable.

maxlength is the maximum number of bytes to be written. The number of bytes have
actually been written to the socket can be accessed via the socketObj%write:length. If
there are more bytes in the "content" value, only the first "maxlength" bytes will be written.
Otherwise, the entire content will be written. The latter case is the default if "maxlength" is
not specified.

5.8.8 socketc lose – c lose a socket

BEE Script: socketclose socketObj;

BEE Tag: <beesocketclose socketObj>

BEE Script User Reference 106

The "socketclose" command closes a socket.

The "socketclose" command will set status%socket and message%socket accordingly.

Parameters

socket (the socketObj) is the name of the socket to close.

5.8.9 socketcont rol – cont rol some behaviours of the socket

BEE Script: socketcontrol socketObj [blocking=bool] [timeout=integer];

BEE Tag: <beesocketcontrol socketObj [blocking=bool] [timeout=integer]>

The "socketcontrol" command changes the behaviour of the socket.

The "socketcontrol" command will set status%socket and message%socket accordingly.

Parameters

socket (the socketObj) is the name of the socket to have the behaviour changed.

blocking is used to change the socket to non-blocking by specifying "blocking" as false
(e.g. 0). In the current version of BEE, you cannot set a non-blocking socket back to
blocking.

timeout is the number of seconds the blocking will persist until the process resume its
operation even without an input.

5.9 Special Funct ions

5.9.1 mailto – send an e-mail

BEE Script: mailto emailAddress [subject=string]
 [from=emailAddress] [fromname=string]
 [cc=emailAddress] [bcc=emailAddress]

[errorsto=emailAddress]
 [ignore=string] [header=string] [body=string];

BEE Tag: <beemailto emailAddress [subject=string]
 [from=emailAddress] [fromname=string]
 [cc=emailAddress] [bcc=emailAddress]

[errorsto=emailAddress]
 [ignore=string] [header=string] [body=string]>

Note: If the message is sent to multiple addresses, please separate them but commas.

The "mailto" command differs from other form-mail scripts in several ways:

BEE Script User Reference 107

Firstly, "mailto" command does not show up in the <form ...> tag. You simply set the
action="..." to the confirmation (or thank-you) page, where the "mailto" command is
included.

Secondly, "mailto" command can send an e-mail without a form submission. You can use
this to get alert messages directly from the website.

Thirdly, "mailto" command does not disclose any parameters to the users including the
recipient’s e-mail address, not even from the page source view. All the users can see is
the confirmation page, and by then the mail has already been sent.

This is to protect the privacy of the recipient and prevent the e-mail address from being
scanned on the website by online marketers.

Parameters

subject of the e-mail. Default is "Online Submission".

from is the e-mail address appearing at the "From" line of the e-mail.

fromname is the name of the sender appearing at the "From" line of the e-mail.

cc is the CC recipient of the e-mail. If there are multiple addresses, please separate them
by commas.

bcc is the BCC recipient of the e-mail. If there are multiple addresses, please separate
them but commas.

errorsto is the e-mail address errors are sent to. In another word, if the e-mail cannot be
delivered, the "bounce back" will be sent to the "errorsto" address. (The default will be the
"from" e-mail address if specified, or otherwise, the e-mail address of the user which the
web server runs on.)

header is a string specifying any extra header lines you want to append to the original
header. For example, header="{const%mail:HTML_HEADER}" will turn the message
from plain text into HTML format.

Please be careful not to repeat the header lines. For example, if you specify the "From"
line in the header string, do not specify the "from" parameters. Otherwise, there will be
two "From" lines in the header, which may result in unpredictable result.

body is the message body to send. If "body" is blank, the elements in the sys%form
variable (the form entries) will be listed to form the message body. You can use body="..."
to send an arbitary message, whether a form is submitted or not. This is useful to keep
track of access to pages of importance. You can send the administrator an e-mail
notification whenever the page is accessed and/or a condition is met.

ignore is a list of names (separated by commas) specifying the sys%form elements to be
ignored in the e-mail. Example: ignore="MyEmail, Submit" would cause "mailto" tag not to
include MyEmail and Submit into the message body. The parameter "ignore" will be
ignored if the parameter "body" is specified, in which case all sys%form elements will be
ignored anyway.

After calling the function, the following BEE Variables are made available:

BEE Script User Reference 108

result%mailto:header The message header built for the e-mail

result%mailto:body The message header passed in (or built) for the e-
mail.

5.9.2 tex t – spec ify an online editable and searchable tex t

BEE Script: text name [default=string]
[editprompt=string] [init=string]
[webpath=string] [textpath=string]
[display=bool] [hidden=bool] [showvar=bool]
[edit=bool] [anchor=string]
[highlight=var] [hlbegin=string] [hlend=string]
[bgshield=string]
[allowview=accessControlSpec]
[allowedit=accessControlSpec];

BEE Tag: <beetext name [default=string]

[editprompt=string] [init=string]
[webpath=string] [textpath=string]
[display=bool] [hidden=bool] [showvar=bool]
[edit=bool] [anchor=string]
[highlight=var] [hlbegin=string] [hlend=string]
[bgshield=string]
[allowview=accessControlSpec]
[allowedit=accessControlSpec]>

The Text Command is used to specify a unit of content that can be displayed, searched. If
the "admin" user is logged in, the text can be edited. In such case, at the end of each text
unit there is a link to a Text Edit page, which allows modification of the text content via a
word processor-like interface.

The textName is a "Text Variable" in the format of "page&text:item". The "page" part is
default to be the path of the caller page’s URL ({sys%urlshown:pathpage}). For example,
If the "text" command is called from "http://www.foo.com/blah/mypage.htm?abc=1", the
default "page" part will be "/blah/mypage.htm".) The "text" part is the name of the text unit
and should be unique within the page. The "item" part is optional. If used, it helps to
group different text units under the same name for clarity.

The value of the text variable is stored with the website as part of the content. It can be
accessed via the "text" class: "text%page&text:item" (internally implemented as a
"scheme" class object). Since "page" is default to the current page, you can take it that
every page has a "text" class of its own (i.e. text%text:item refers to
text%CurrentPage&text:item). The "page&" part is used only if you want to refer to the
"text" class of another page.

BEE Script User Reference 109

The "item" part is rarely used. However, one special item called "AllowView", which will let
you specify an access level below which the text is not visible. For example, if you specify
"text%member.htm&sensitive:AllowView" to "member", any sessions with a privilege
under that of "member" will not see the text. (AllowView defaults to "public".) There are
another special item called "AllowEdit" which control the editing of page text. More details
can be found later in this section.

Parameter

default specifies the string to display if the text content is blank.

editprompt specifies the string to display in the text editor if the text content is blank.

init specifies the string to display and save automatically if the text content is blank. Upon
encountering of a "text" command with the "init" parameter, the text content is created and
contains the value of the "init" parameter (unlike "default" which does not create any
content unless the administrator explicitly click the Edit icon, enter the new text and Save.)

The "init" parameter is usually used to convert an existing page into a template without
affecting the appearance. You just surround the original text with <beetext textName
init=’originalText’> and after the first run of that page, the content is saved. (The "init"
value has no effect in subsequent runs and therefore can be removed.)

webpath is for "non-standard" text storage structure. For example, if your website’s home
path is http://server/mysite, so for page http://server/mysite/mypage.htm you naturally want
its content to be stored under text%/mypage.htm&. However, according to the "standard"
text storage structure, the content should be in text%/mysite/mypage.htm. To breach the
two structures, you can specify webpath=/mysite and the "text" command will work out
that the text file is in fact in text%/mypage.htm& (instead of text%/mysite/mypage.htm&).

textpath is for "non-standard" text storage structure. For example, if for some reasons
your want to "bury" your content under a subdirectory (usually for version control), you can
specify textpath=/subdir and the "text" command will use text%/subdir/mypage.htm&
(instead of text%/mypage.htm&) for the content of http://server/mypage.htm.

display indicates whether to display the text unit or not. The default is true. The usual
case to turn "display" off is to include a server-side hidden text in the page so that the
browser at the client-side cannot see, not even with "View Source". For example, if a
product information page shows pricing that is derived from a cost figure that you set in the
page, you would not want the customer to see the cost. You can use the Text Command
with display=false so only the admin login will see it.

hidden indicates whether to hide the text regardless of the "admin" login. A true for
"hidden" is not the same as a false for "display". If "display" is false, it will not run the "text"
command at all unless it is the "admin" login. That means "display" has no effect when
logged in as "admin". On the other hand, if "hidden" is true, it will run regardless, even for
non "admin" user. It is only when it comes to showing the text, it will skip the text unless it
is in the editor. "hidden" is usually used for text of non-display purposes, such as to
initialise a variable or to file up an editor to capture a user entered text for application use.

showvar indicates whether to evaluate for BEE values before displaying the string. This
does not affect the text in edit, which is always showing the text without evaluation so that
the user can modify the expression. The default is false.

BEE Script User Reference 110

edit indicates whether to allow edit on this text unit or not. Even when "edit" is true, you
still need to login as the "admin" user in order to be able to edit the text unit. If "edit" is
false, the text is not editable in any circumstances.

This parameter can be used to turn off the edit feature for the text unit, or to specify a
"duplicated" text unit of which the value will inherit from another editable text unit of the
same name. The default is true.

anchor if specified indicates the name of the HTML anchor tag (e.g.)
for direct reference/link to the text position. You can turn anchor off by specifying
anchor="". If the "anchor" parameter is not specified and the "edit" parameter is true, then
the system will use the "text" part of the textName as the anchor’s name (or if the item part
is specified, an underscore followed by the item name will be appended to the anchor’s
name to make it unique.)

highlight is the name of the variable that contains the string to highlight (usually as a
result of a search). If the variable is an array, every strings in the array will be highlighted.

hlbegin specifies the string displayed before the highlighted text. The default is
"".

hlend specifies the string displayed after the highlighted text. The default is "".

bgshield specifies the opacity of the background shield, which stops the editor from going
beyond the Text Edit Area. The value can be from 0 (clear) to 100 (complete white). The
default is 65.

allowview specifies the minimum access level required to view the text. This parameter
overwrites all AllowView specification in the text% and scheme% class (see below).

allowedit specifies the minimum access level required to edit the text. This parameter
overwrites all AllowEdit specification in the text% and scheme% class (see below).

There are some special "text" and "scheme" class variables to govern the user privileges
of text viewing and editing:

text%page&text:AllowView The minimum access level required to view the
text. Default is "public".

text%page&AllowView The minimum access level required to view any
text on the page, except for those individually
governed by text%page&text:AllowView. Default
is "public".

scheme%AllowView The minimum access level required to view any
text on the website, except for those individually
governed by text%page&text:AllowView or
text%page&AllowView. Default is "public".

text%page&text:AllowEdit The minimum access level required to edit the
text. Default is "edit".

BEE Script User Reference 111

text%page&AllowEdit The minimum access level required to edit any
text on the page, except for those individually
governed by text%page&text:AllowEdit. Default
is "admin".

scheme%AllowEdit The minimum access level required to edit any
text on the website, except for those individually
governed by text%page&text:AllowEdit or
text%page&AllowEdit. Default is "admin".

There are some "scheme" class variables to control the text viewing and editing functions:

scheme%TextEdit:ArgPage The argument name via which that the "page"
part of "name" is passed to the Text Edit page.
The default is "pagecode".

scheme%TextEdit:ArgText The argument name via which that the "text" part
of "name" is passed to the Text Edit page. The
default is "textcode".

scheme%TextEdit:ArgItem The argument name via which that the "item" part
of "name" is passed to the Text Edit page. The
default is "itemcode".

scheme%TextEdit:Link The HTML code to specify the link to be
displayed immediately after the text unit. You can
use BEE Variable syntax within the code. Some
more "local" variables are made available:

param%text:pagecode - The page part of "name"

param%text:textcode - The text part of "name"

param%text:itemcode - The item part of "name"

(If scheme%TextEdit:ArgPage,
scheme%TextEdit:ArgText and
scheme%TextEdit:ArgItem is specified, use their
values in intead of "pagecode", "textcode" and
"itemcode" respectively.)

If you are writing your own Text Edit page, all it
does is to accept the three arguments, retrieve
the text via "text%[text]:[item]", modify it and save
it into the same.

If scheme%TextEdit:Link is not specified, the
following scheme parameters will be used.

scheme%TextEdit:URL The URL of the Text Edit page WITHOUT the
pagecode, textcode and itemcode arguments.

BEE Script User Reference 112

The default is "/textedit/edit.htm".

scheme%TextEdit:Caption The caption appear in the Text Edit link. The
default is "Edit".

scheme%TextEdit:Target The target window that the Text Edit page will
appear. The default is "_blank" (a new window).

scheme%TextEdit:Title The "title" attribute for the anchor tag. (In IE 4 and
above, the title string will appear when you move
your mouse over the link.) The default is "Edit
Text".

There are some special "session" and "scheme" class variables to govern the image and
file insertion:

session%ImageFile If not blank, it will be used as the image address
after the "webpath". (In this case, the user will not
be able to change the image address in the
InsertImage dialogue box.)

For example, if the webpath is http://server/mysite
and the session%ImageFile is /img/mypict.gif, the
image URL will be
"http://server/mysite/img/mypict.gif".

session%ImageDir If not blank, it will be used as the default image
directory, and the local file name to upload will be
appended to this image directory to form the
image address. The user can overwrite this
image directory in the InsertImage dialogue box if
they choose to.

The default is "{scheme%ImageDir}" (which in
turn defaults to "/images").

scheme%ImageDir Same as "{session%ImageDir}" but effective only
if session%ImageDir is blank. The default is
"/images".

scheme%ImageRoot The "root" path preceding the image address.
For example, if {scheme%ImageRoot} is "/cust",
the image address will be under /cust. e.g.
"/cust/images/mypict.gif".

This setting usually requires the upload directory
(sys%croft:filedir) to point to the physical directory
corresponding to the "/cust" path.

session%ImageSubroot This will be appended to {scheme%ImageRoot}.
For example, if {scheme%ImageRoot} is "/cust"
and {session%ImageSubroot} is "/brochure", the

BEE Script User Reference 113

image address will be under /cust/brochure. e.g.
"/cust/brochure/images/mypict.gif".

session%LinkDir If not blank, it will be used as the default file
upload directory, and the local file name to upload
will be appended to this link directory to form the
link address. The user can overwrite this link
directory in the InsertFile dialogue box if they
choose to.

The default is "{scheme%LinkDir}".

scheme%LinkDir Same as "{session%LinkDir}" but effective only if
session%LinkDir is blank. The default is blank.

scheme%FileRoot The "root" path preceding the link address. For
example, if {scheme%FileRoot} is "/cust", the link
address will be under /cust. e.g.
"/cust/mydoc.pdf".

This setting usually requires the upload directory
(sys%croft:filedir) to point to the physical directory
corresponding to the "/cust" path.

session%FileSubroot This will be appended to {scheme%FileRoot}.
For example, if {scheme%FileRoot} is "/cust" and
{session%FileSubroot} is "/brochure", the link
address will be under /cust/brochure. e.g.
"/cust/brochure//mydoc.pdf".

session%Phantom The "Phantom" mode. When set, no text will be
saved and no images or files will be uploaded.
Instead, the local link will be returned into the Text
Edit page for display (so that the user sees the
same as if Phantom mode is off).

"Phantom" mode is provided by the Portal Object,
not the BEE platform. But the object requires
platform support (via this session variable) to stop
text saving or file uploading.

After calling the function, the following BEE Variables are made available:

result%text:length The length of text displayed. This is usually for
checking whether any text has been displayed (e.g.
so as to display a default).

BEE Script User Reference 114

5.9.3 auth – cont rol authent icat ion informat ion

BEE Script: auth action;

BEE Tag: <beeauth action>

The command "auth" is to control authentication information.

There are only one "auth" action currently available in BEE:

save Save all authentication attributes to the user record
(Authentication attributes are data for the logged in
user, and can be changed by assigning new values
to variable sys%auth:attributeName.) This operation
will set status%auth and message%auth accordingly.

Note: The "password" attribute cannot be changed in this way. You must assign an array
of two values: old and new into the System Variable sys%password. e.g. var pswd:old =
"myoldpswd"; var pswd:new = "mynewpswd"; var sys%password = (var)pswd;

5.9.4 scheme – access the scheme file

BEE Script: scheme action;

BEE Tag: <beescheme action>

The command "scheme" is used to access the scheme file.

The followings are the "scheme" actions currently available in BEE:

reload Reload all scheme settings (ignoring all changes
made to the non-file "scheme" class since the last
save)

unload
or save

Save all scheme settings (all changes made by
made to the non-file "scheme" class.

Note: Other users will not get the new settings until
they restart their browser.

5.9.5 output – cont rol the display

BEE Script: output action;

BEE Tag: <beeoutput action>

The command "output" is used to control the display.

The followings are the "output" actions currently available in BEE:

BEE Script User Reference 115

bufferbegin
begin
(default)

Begin redirecting display to an internal output buffer.
In another word, stop displaying and instead, build a
display string internally.

The output buffer can be accessed via the
sys%output:content variable. Its length (number of
characters in it) is in sys%output:length.

bufferend
end

Display the output buffer onto the web page, destroy
the content of the output buffer and stop further
display redirection to the output buffer.

buffercancel
cancel

Destroy the content of the output buffer without
displaying it, and stop further display redirection to
the output buffer.

now Flush the output to the client. (Server platform and
client browser dependent.)

instantly Flush after each output (as if using "output now" after
every "display"). This will implicitly assume an
"output bufferend" so that all buffered content will be
output at once and buffering will end immediately.

Note: On some platform, using "output instantly" may
have an impact on performance.

noninstantly Turn off "output instantly", which means to display
output according to the platform and browser default
behaviour in bufferring.

5.9.6 sleep – pause the operat ion

BEE Script: sleep [sleep=num];

BEE Tag: <beesleep [sleep=num]>

The command "sleep" is used to pause the operation for a specific period of time. The
parameter:

Parameters

sleep is the number of seconds that the operation will pause for. The default value of
"sleep" is 1.

5.9.7 virtualpage – indicate a Virtual Page template page (opt ional)

BEE Script: virtualpage;

BEE Script User Reference 116

BEE Tag: <beevirtualpage>

The command "virtualpage" output an HTTP page header with Status Code 200 (OK) to
indicate that the page is a valid page. This is useful to overwrite the default Status Code
404 (Not Found) when the web server redirect a virtual page (missing page) to the
template page.

This command is not required in most cases. However, if it is ever used, it must be the
first line of the template page before any output (even before the <html>).

The reason to have this command is that some browsers (notably Internet Explorer) and
browser extension software trap the 404 Status Code and substitute the entire page with a
"friendly" page or search-advertisement page. On such browers, the BEE Virtual Page
mechanism (missing-page redirection to a template page that load real content based on
the requested URL) will not work. This "virtualpage" command will "cheat" the browser or
extension software into believing that the page is "real" and therefore not to alter it.

5.9.8 franchise – to acquire CROFT access of an idURL (CLI only)

BEE Script: franchise franchise=idURL;

BEE Tag: <beefranchise>

BEE allocates resources based on the idURL (the URL without the http:// part and
arguments), but if you are running the script from the Shell through the CLI (The PHP
Command Line Interpretor), there is no idURL associated with the script. If you require
CROFT resources like database access, you will need to assign an idURL to the script
through the "franchise" command.

For security reason, the script file needs to be owned by a "franchisee" of the idURL in
order to franchise to it. The list of franchisees of any particular idURL is specified in the
CROFT system. Such list is usually empty unless the idURL allows franchising.

The "franchise" command is for CLI only and will be ignored if you are running it on a
webpage.

Parameters

franchise is the idURL of which the CROFT access the script would assume after the
execution of the command. Please note that the idURL is in the format of
webserver/webpath format. For example, www.mywebsite.com or
www.mywebsite.com/mypath.

BEE Script User Reference 117

6 Database Operat ion

The BEE Database Operation is carried out by several commands, mainly the "database"
command. For data retrieval, subsequent "get" commands (most commonly represented
in "var" assignment) or "foreach" loop can be used to fetch the records in the retrieved
record set. For details of the syntax and parameters of these commands, please see
"BEE Command Reference".

There are two modes of operation with the "database" command: "query" and "action". In
either mode, the system will eventually submit an SQL query to the database engine and
obtain the result from it. The difference of the two modes is in how the SQL query is built.

In the "query" parameter is specified, the "query" mode is assumed and the "action"
parameter will be ignored.

In "query" mode, the SQL query statement is specified by the user explicitly. The system
simply take the query string, evaluate for embedded variables, and submit it to the
database engine. For data retrieval, the system will retrieval the record set for later
fetching. If "seek" is specified, the required record in the record set will be located for
subsequent fetching.

If the "query" parameter is not specified but the "action" parameter is, the "action" mode is
assumed.

In "action" mode (only if the "query" parameter is NOT specified), the SQL query
statement is built from the "Argument Variables" in the database object (represented in
this document as dbobj) and the matrix. (Please see the "matrix" parameter under the
"database" command.)

If neither the "query" parameter nor the "action" parameter is specified, the "database"
command does not do anything unless "seek" is specified, in which case, the "seek"
operation is performed on the last retrieved record set.

6.1 Database Variables

The "database" command uses many BEE Variables implicitly, especially in "action"
mode, which is almost entirely variable driven. The variables are under the database
object (the dbobj as represented in this document), the matrix class and in some system
classes (e.g. status%, message% and session%).

They can be categorised into three groups: Argument Variables (input to the system in
"action" mode), System Variables (output from the system), and Paging Variables (also
output from the system but for the purpose of display paging).

6.1.1 Argument Variables (Input to the system)

Argument Variables are variables specified by the user and not changed by the system.
They are used as input arguments to the database operation.

BEE Script User Reference 118

Please note that all Argument Variables are ignored if the parameter "query" is specified.
In such case, the SQL statement contained in the "query" parameter is all the database
operation is needed to complete the job. (The variable dbobj%decode is still effective
even in an SQL statement query retrieval, but it will not be used until the record set is later
retrieved via a "get" command or a "foreach" loop.)

The following Argument Variables form part of the table definition. Even though these
Argument Variables can be set up or changed at any time, it is recommended to define
the necessary ones in the table definition section of the code (except for dbobj%search,
which is usually done when the search keys are processed, for example, from the form
input.)

Variable Description

dbobj%table If specified, the table name used in an "action".
Otherwise, the name of dbobj will be used as the
table name.

dbobj%keyfield The name of the key field name.

The value of dbobj%keyfield is used by different
actions in different ways:

select: dbobj%keyfield is not used

update: dbobj%keyfield, if specified, overwrites
the record filter (the generated where-
clause) with keyfield = ’keyValue’ (the
keyValue is from the matrix.) Also, the
key field and its corresponding value will
be removed from the set-list to avoid the
key field being updated.

insert: dbobj%keyfield, if specified, its value will
be disgarded and replaced with one
generated by the underlying database
platform. If the database does not
generate keys, it will be an error.

delete: dbobj%keyfield, if specified, overwrites
the record filter (the generated where-
clause) with keyfield = ’keyValue’ (the
keyValue is from the first row of the
matrix). In this case, only one record
can be deleted.

dbobj%mustfields If specified, contains a list of compulsory fields. A
compulsory field is one that must appear in
dbobj%fields. The system will examine dbobj%fields
and if there are compulsory fields missing, their
names will be appended to dbobj%fields.

This feature is useful when some fields in the matrix

BEE Script User Reference 119

might be missing (e.g. if the matrix receives its values
from a form, and so happens that none of the
checkboxes or radio entry of a particular column are
checked by the user). When such a "matrix" is
processed by the "group" command, the missing
fields will not be included into dbobj%fields at all, and
the whole column will be ignored (instead of setting
them all to the unchecked status.)

Therefore, it is recommended to include every
checkbox and radio entry into dbobj%mustfields.

dbobj%wild To avoid accidental operations on the entire table
(e.g. due to programming or operational error),
"update" and "delete" will return an error if there is
neither a key field nor a where-clause implicit (record
filter) or explicit (dbobj%where).

By specifying dbobj%wild to be true (non-null and
non-zero), you overwrite this protection and allow
operation to be carried out for the entire table in one
go without a where-clause and without a key field
being specified.

For "select", selecting multiple tables without a
where-clause will result in an error (to protect the
platform from being overloaded with a huge record
set) unless dbobj%wild is true. Selecting on a single
table without a where-clause is valid, regardless of
the value of dbobj%wild.

dbobj%wild has no effect if the "query" parameter is
specified in the "database" command. (You can do
anything with a "query".)

dbobj%orderby The "order by" clause without the word "order by". It
is a comma-delimited list of field names, each is
optionally followed by "desc" to indicate a reverse
sorting order.

This variable is used only for data retrieval operation.

(If multiple tables are involved, please make sure the
table name qualifiers and a dot is included in each
field to be sorted.)

dbobj%match:matchName If specified, contains a search criterion named
matchName. The criterion is in the format of
matchType:matchField, where matchField is the field
in the table to match (default is matchName), and
matchType is one of these:

equal Field content is equal to the key

BEE Script User Reference 120

substr Field content contains the key as a substring

regexp Field content matches the regular
expression represented by the key

clike Field content matches the clike expression
represented by the key

rlike Field content matches the rlike expression
represented by the key

min Field content is equal to or higher than the
key

max Field content is equal to or lower than the
key

minx Field content is higher than the key

maxx Field content is lower than the key

dbobj%search:matchName If specified, contains the key for match criterion
matchName. The value of the key is to be used to
build the record filter (the generated where-clause).
e.g. If "dbobj%match:CanAfford" contains
"max:Price" and "dbobj%search:CanAfford" contains
"1000", the where-clause will contain the condition
"Price <= 1000". All these conditions are "and"ed
together to form the where-clause.

If dbobj%match:matchName does not exist, it is
assumed to be "equal". This simplify the process:
setting dbobj%search:field to value generate a
criterion of field = ’value’.

Usually, the dbobj%search variable copies the
values from the search form via sys%form as in:
var dbobj%search = "(var)sys%form";

dbobj%where If specified, will be taken as the first condition in the
record filter (the generated where-clause). i.e. the
condition contained in dbobj%where will be "and"ed
to the generated where-clause from the left.

dbobj%selectfrom If specified, overwrites the field list (dbobj%fields) and
table (dbobj%table).

The variable dbobj%selectfrom is useful to join
multiple tables in a "select" operation. In that case,
the dbobj%where variable needs to contain the
conditions that link the tables together. That is why
the variable dbobj%selectfrom is effective only if
dbobj%where is specified (unless dbobj%wild is true,
which is a dangerous and useless things to do as the

BEE Script User Reference 121

joining will become an unrestricted crossing of all the
tables involved, and is likely to end up timing out.)

dbobj%encode:field If specified, contains a BEE Conversion to apply to
the value to be written to Field field, or the value to be
used in the record filter (the where-clause). e.g.
var friend%encode:Birthday = "strtotime";

dbobj%decode:field If specified, contains a BEE Conversion to apply to
the value read from Field field. e.g.
var friend%decode:Birthday = "strftime:%Y-%m-%d";

dbobj%quote:field If specified, contains a quotation mark to use when
generating the query for Field field. The default is
single quotation mark (’). Set it to blank if no
quotation mark is required. e.g. with mSQL
var friend%quote:ID = "";

dbobj%fieldnames If specified, the elements will be used as keys of the
record fetched from the record set. This is useful if
you want to overwrite the field names defined in the
database.

The list is position sensitive as the first element will
be used as the key for the first fetched field, the
second element as the key for the second field and
so on.

In multiple table joining, the same field names may
exist in different tables. In such case,
dbobj%fieldnames is the only way to distinguish
them by giving each field a distinct name.

dbobj%fieldnames are used at the time of reading
the database result (via the (db)dbobj cast), not at
the time of "query". That means you can modify
dbobj%fieldnames even after reading has started.
This will cause subsequent readings to bear different
fieldnames.

6.1.2 System Variables (Output from the system)

There are variables that are updated automatically by the system as a result ("output") of
the database operation.

The followings are general System Variables in the database object:

Variable Description

BEE Script User Reference 122

dbobj%tablelist Contains a list of table names available in the
underlying database. Value initialised upon the first
access of "database" command regardless of what
operation and table it is on (if at all), and the value
does not changed in the entire page run.

dbobj%fieldlist Contains a list of field names available in the table
specified in dbobj%table, or if it is not specified, the
name of dbobj.

If you modify the value of dbobj%table, the next
access to the "database" command will see
dbobj%fieldlist updated with a new field list of the
newly specified table.

Any successful data retrieval operation will update
dbobj%fieldlist as well, even if it was via the SQL
statement containing in the "query" parameter.

dbobj%query Last query statement regardless of whether it was
successful or not

dbobj%queryaction Action of the last query statement (i.e. "select",
"update", "insert" or "delete") regardless of whether it
was successful or not

The followings are general System Variables in system classes:

Variable Description

dbobj%status
or status%database

Error code of the database operation, or 0 if
successful

dbobj%message
or message%database

Error message of the database operation, or blank if
successful

session%database:query Last successful query saved as persistent value that
is kept through out the client session

session%database:select Last successful select query saved as persistent
value that is kept through out the client session

session%database:update Last successful update query saved as persistent
value that is kept through out the client session

session%database:insert Last successful insert query saved as persistent
value that is kept through out the client session

session%database:delete Last successful delete query saved as persistent
value that is kept through out the client session

BEE Script User Reference 123

session%database:queryaction Action of last successful query saved as persistent
value that is kept through out the client session

A brief note on session%database, upon a successful database operation, the system will
save dbobj%query into session%database:query, and dbobj%queryaction into
session%database:queryaction, then save dbobj%query again into
session%database:{dbobj%queryaction}.

These "session" variables also have a copy in session%{dbobj%name}, where
{dbobj%name} is the unique name the system generates or you explicitly specify in the
database operation.

There are some System Variables that are related to data retrieval only:

Variable Description

dbobj%numrecs
or any of these:
dbobj%numrec
dbobj%numrecords
dbobj%numrecord
dbobj%numrows
dbobj%numrow

Number of records in the record set retrieved in the
last query, or 0 if it was unsuccessful or was not a
data retrieval query.

dbobj%thisrecord:field Contains the Field field in the record just retrieved. (If
the record just retrieved is empty, for example, when
retrieved beyond the last record in the record set,
dbobj%thisrecord will not be updated (and will retain
its last value).

dbobj%lastrecord:field Contains the Field field in the record retrieved before
the one just retrieved. If the record just retrieved is
empty, for example, when retrieved beyond the last
record in the record set, dbobj%lastrecord will not be
updated (and will retain its last value).

dbobj%datacount Contains the number of records read so far.

dbobj%datacount:field Contains the number of last consecutive retrievals in
which the data of Field field has not changed.

For example, if vehicle%thisrecord:make is "BMW"
and vehicle%datacount:make is 3, then you can tell
that the last two retrievals on "make" were also
"BMW".

This is useful in detecting change of value (i.e. when
dbobj%datacount:field is 1) to determine the end of a
subtable.

If the record just retrieved is empty, for example,
when retrieved beyond the last record in the record
set, dbobj%lastrecord will not be updated (and will

BEE Script User Reference 124

retain its last value).

There are some variables that are related to data insertion only:

Variable Description

dbobj%lastseq The last sequence number inserted into the table. It
is an output from the "nextseq" action. If the value is
negative (-1), that means the previous "nextseq"
came up with an error.

Please note that not all database platform supports a
retrieval of the last generated sequence number.
Please see Database Action "nextseq".

6.1.3 Paging Variables (for display paging)

It is a common design for a commercial website to display a large record set in separate
pages. But it may not be efficient (if possible at all) to keep the database connection and
record set handles across sessions, as you will never know when the client will finish and
release the resources.

It would be much easier to implement record set display paging in separate queries. That
is to make a new query every time a new page of records is required. For example, if 200
records are returned and the first page of 10 is on the screen, the visitor can click "next
page" to get the 11th to the 20th records. The web page will submit the same query again
(as the previous one has been completed and resources released) but start retrieving from
the 11th record. If the visitor click, say, page 6 on the page navigation bar, the web page
will again submit the query and go straight to record 51 and start retrieval from there.

The "database" command handles this mechanism automatically and neatly. The "Paging
Variables" of the database object are for this purpose. But before we do into the details of
those variables, we need to explain how the display paging work.

6.1.3.1 How paging works

As mentioned before, the "seek" parameter specify the position to start the next retrieval.
There are two more optional numbers in the "seek" parameter after the record to seek: the
number of records per page (RPP, default is 10) and the number of pages per block (PPB,
default is 10). (A block is the collection of pages on the page navigation bar.)

With these three numbers, BEE will calculate the positioning of the pages on the page
navigation bar and return an array. The target page will contain the sought record. For
example, seek="71,10,5" means to seek record 71, with 10 records per page and 5 pages
per block. The page navigation bar should contain page 6 (record 51-60), page 7 (record
61-70), page 8 (record 71-80), page 9 (record 81-90) and page 10 (record 91-100). The
sought record (number 71) is in page 8.

BEE Script User Reference 125

If the sought record does not fall into the first record of the page, BEE will automatically
change the "seek" position internally so that the next retrieval will always start from the first
record of the page. In the above example, if seek="73,10,5", the next retrieval will still start
from 71 because it is the first record in the sought page (page 8).

This automatic repositioning does not apply unless the paging numbers (the second
and/or the third number) are specified. This will guarantee that you get what you want to
seek if you are not interested in display paging.

Besides the positioning, we need to make sure the same record set is carried through to
various pages of the same search. This is done by keeping track of the last successful
"select" query and resending it to the database platform in each page run.

The last successful query has been stored as a session variable. All you need to do is to
have query="{session%database:select}". (Alternatively, if you want to use "action" mode,
you can save the search criteria in dbobj%search and use it to generate a query in
subsequent paging display. This is a more complicated solution. The "session" variable
method is preferable unless you have a good reason not to use it.)

The format of the hyperlink to the pages can be specified in the dbobj%pagebar variable
(input), and the system will generate the "cells" on the page bar and put them into the
dbobj%page variable (output).

Example:

var href = "href=@self?record=@record";

var mydb%pagebar:first = "<a {href}>|<<";
var mydb%pagebar:previous = "<a {href}><<";
var mydb%pagebar:back = "<a {href}><-";
var mydb%pagebar:page = "<a {href}>@page";
var mydb%pagebar:sought = "@page";
var mydb%pagebar:forward = "<a {href}>->";
var mydb%pagebar:next = "<a {href}>>>";
var mydb%pagebar:last = "<a {href}>>>|";

var rec = "{form%record}";
if ({#rec:} == 0) var rec = 1;

var recordsperpage = 5;
var pagesperblock = 3;

database "mydb" query="{session%database:select}"
 seek="{rec},{recordsperpage},{pagesperblock}";

display "{pb%page|list:(@value) ()}";
// If rec is 71 and there are 200 records in the record set,
// display |<< << <- 6 7 8 9 10 -> >> >>|
// hyperlink record= 1 41 61 51 61 81 91 81 101 191

Note: The "pagebar" definition in the above example is the default. So the above
initialisation is trivial unless you want to use different values (e.g. some button images.)

BEE Script User Reference 126

6.1.3.2 Variables for paging

The followings are the Paging Variables for the page navigation bar display:

Variable Description

dbobj%pagebar Contains a list of format strings used by the system
to generate dbobj%page for displaying a page
navigation bar.

The elements are positionally sensitive as the page
bar (in dbobj%page) will follow the same order as in
dbobj%pagebar (except for dbobj%pagebar:sought.)

Not all the format strings will be used. For example,
if the sought record is already in the first page of the
first block, then "first", "previous" and "back" will not
be included in the dbobj%page output variable.
Likewise, for the last record, "last", "next" and
"forward" will not be included.

In the format string, the following string will be
replaced by the corresponding values shown below:

@page the page number of the sought page

@record the record number of the first record of the
sought page

@self the path-page of the URL (i.e. {sys%self}).

@query the SQL of the last query URL-encoded.

dbobj%pagebar:first The format string for the first page in the first block.
(|<< in the above example.)

dbobj%pagebar:previous The format string for the last page of the previous
block. (<< in the above example.)

dbobj%pagebar:back The format string for the page before the sought one.
(<- in the above example.)

dbobj%pagebar:page The format string for the pages of the sought block.
(The numbers in the above example.)

dbobj%pagebar:sought The format string for the sought page. It usually set
to contain no hyperlink and is in a different font, so
that it can be easily recognised as the sought page
(the one currently on display.)

If dbobj%pagebar:sought is missing, its value will be
assumed to be the one in dbobj%pagebar:page.

BEE Script User Reference 127

Since the sought page is among the other pages in
the sought block, the system will determine its
position and therefore the format string position in the
dbobj%pagebar variable is not significant and does
not affect the output.

dbobj%pagebar:forward The format string for the page after the sought one.
(-> in the above example.)

dbobj%pagebar:next The format string for the first page of the next block.
(>> in the above example.)

dbobj%pagebar:last The format string for the last page in the last block.
(>>| in the above example.)

dbobj%page Contains in each of its elements the display of a
page in the navigation bar, formated by the
corresponding format string specified in
dbobj%pagebar.

dbobj%page is available only if the "seek" parameter
is specified in the "database" command. For details,
please refer to the example presented earlier in this
section.

There are other information that helps to determine where the record, the page and the
block are:

Variable Description

dbobj%sought:record The record number of the sought record

Note: this value always equals to the first number in
the "seek" parameter, regardless the possible
repositioning of the "seek" position to align with the
first record in the page. (Please see dbobj%first:rip.)

dbobj%sought:page The page number of the page that the sought record
is in (the sought page)

dbobj%sought:block The block number of the block that the sought page
is in (the sought block)

dbobj%first:recordinpage
or dbobj%first:rip

The record number of the first record in the sought
page

Note: this value always reflects the actual "seek"
position, so that the next retrieval always start from
the first record in the page.

dbobj%first:pageinblock The page number of the first page in the sought

BEE Script User Reference 128

or dbobj%first:pib block

dbobj%first:recordinblock
or dbobj%first:rib

The record number of the first record in the first page
of the sought block

dbobj%last:record The record number of the last record in the record
set. The value is the same as dbobj%numrecs

dbobj%last:page The page number of the last page in the record set.

dbobj%last:block The block number of the last block in the record set.

dbobj%last:recordinpage
or dbobj%last:rip

The record number of the last record in the sought
page

dbobj%last:pageinblock
or dbobj%last:pib

The page number of the last page in the sought
block

dbobj%last:recordinblock
or dbobj%last:rib

The record number of the last record in the last page
of the sought block

dbobj%count:recordsinpage
or dbobj%count:rip

The number of records in a page

dbobj%count:pagesinblock
or dbobj%count:pib

The number of pages in a block

dbobj%count:recordsinblock
or dbobj%count:rib

The number of records in a block

6.2 Database Act ions

Most of the "magic" of database operation in BEE are provided in the "action" mode (when
the "action" parameter is specified without the "query" parameter.)

There are eleven Database Actions. Among them are four data access (select, update,
insert and delete), five VirtualBase operations (create, load, unload, showcreatetable and
showinsertinto) and two supplementary (push and nextseq). You can specify any one of
these in the "action" parameter of the "database" command.

6.2.1 Data Access Act ions

The four data access actions come with some synonyms and are shown in a smaller font
in the following:

Data Access
Actions

Description

select
search

get

Read from the database.

The system will first check whether dbobj%selectform is
specified and the select range is restricted by dbobj%where

BEE Script User Reference 129

read

retrieve
specified and the select range is restricted by dbobj%where
(unless dbobj%wild is true). If so, they will be used to
generate the SQL query statement.

Otherwise, the generated SQL statement will be a select on
the table defined in dbobj%table on the fields in dbobj%fields.
If dbobj%table is not specified, the name of dbobj will be used
as the table name. If dbobj%fields is not specified, all fields
("*") will be retrieved.

Whether "selectfrom" is used or not, the key values in
dbobj%search will be used to generate the where-clause (and
"and"ed after dbobj%where if one is specified,) and
dbobj%orderby will be used in the "order by" clause of the
generated SQL statement.

The key values contained in dbobj%search will be properly
encoded with the BEE Conversions in dbobj%encode before
being used to generate the where-clause.

The SQL statement will be submitted to the database engine
and the retrieved record set can be fetched via "get"
commands or a "foreach" loop, after the BEE Conversions in
dbobj%decode are applied to their corresponding fields.

update
change

modify

Update the database.

The update will be on the table defined in dbobj%table. If
dbobj%table is not specified, the name of dbobj will be used
as the table name.

The system will get the fields to be updated from
dbobj%fields, appended with field names in dbobj%mustfields
(if specified) for those not in dbobj%fields already. Then
dbobj%keys will be looped through and an SQL update
statement will be generated for each element in dbobj%keys,
based on the values in the matrix. (Please see the "matrix"
parameter under the "database" command.)

All the field values used in the SQL update statement will be
properly encoded using the corresponding BEE Conversions
in dbobj%encode.

If dbobj%keyfield is specified, the corresponding key field will
NOT be updated, and the generated where-clause will be
ignored. Instead, the value of the key field found in the matrix
will be used to find the record to update.

If dbobj%keyfield is not specified, the search criteria in
dbobj%search will be used to generate the where-clause
used in the SQL update statement.

Please note that when updating multiple records from a
matrix, it is important to always specify dbobj%keyfield. This

BEE Script User Reference 130

way, the system will generate multiple SQL update
statements, each update only one record with "where keyfield
= ...", which make sure the corresponding row on the matrix is
being updated.

To avoid updating the entire table by mistake, if the SQL
update statement is found to have no where-clause, the
system will return an error (unless dbobj%wild is true).

insert
put

add

Add a new record into the database.

The new record will be inserted into the table defined in
dbobj%table. If dbobj%table is not specified, the name of
dbobj will be used as the table name.

The system will get the fields to be included in the new record
from dbobj%fields, appended with field names in
dbobj%mustfields (if specified) for those not in dbobj%fields
already. Then dbobj%keys will be looped through and an
SQL insert statement will be generated for each element in
dbobj%keys, based on the values in the matrix. (Please see
the "matrix" parameter under the "database" command.)

All the field values used in the SQL insert statement will be
properly encoded using the corresponding BEE Conversions
in dbobj%encode.

The last sequence number used with the database object will
be checked (assuming that the database platform will not
change its value by mere checking.)

If dbobj%keyfield is specified and the last sequence number
can be obtained from the database platform, the system will
assume that the database platform is capable of generating
the key value internally and therefore would not bother to
include the key field in the inserted record.

However, if the last sequence number is not available, the
system will try to obtain the next sequence number from the
database platform for the key value. If that cannot be
obtained, it will be an error. In another word, if the database
platform is not capable of generating either last sequence or
next sequence, dbobj%keyfield should not be specified at all.

Note: If dbobj%keyfield is specified in an "insert" operation,
the key field value should be available in the matrix (even as a
dummy value) in order to trigger the key generation process.

delete
erase

remove

Delete a record or records from the database.

The record will be deleted from the table defined in
dbobj%table. If dbobj%table is not specified, the name of
dbobj will be used as the table name.

BEE Script User Reference 131

If dbobj%keyfield is specified, the corresponding key field of
the first row of the matrix will be used to identify the record to
be deleted. (The second row and onwards in the matrix are
ignored in the "delete" data access action.)

If dbobj%keyfield is not specified, the search criteria in
dbobj%search will be used to generate the where-clause
used in the SQL delete statement.

To avoid deleting the entire table by mistake, if the SQL
delete statement is found to have no where-clause, the
system will return an error (unless dbobj%wild is true).

Please note that only one "delete" SQL will be executed. For
deletion via the matrix, only one record will be deleted. For
deletion using the search criteria in dbobj%search (when
dbobj%keyfield is not specified), multiple record can be
deleted. Deleting without a where-clause (deleting the entire
table) is possible only if dbobj%wild is true.

6.2.2 VirtualBase Act ions

VirtualBase is a "table-on-the-fly". It is a data structure that can be accessed via the usual
database interface. A VirtualBase table does not exist on any database platform as such.
Instead, it was created, used, and disposed of all in the single page run. Alternatively, you
can save the VirtualBase into a file (the "unload" action) so that you can re-create it in the
future (the "load" action).

VirtualBase is useful in keeping temporary data that require database-like access interface
like sorting, filtering, column and row selective processing etc. Sometimes VirtualBase is
used to hold design attributes for run-time input. For example, Site-map can be easily
done with VirtualBase and the "dbtree" command.

There are only three VirtualBase specific actions. Once a VirtualBase table is instantiated,
you can access it in the "query" mode or the "action" mode as if it is an ordinary database
table.

VirtualBase
Actions

Description

create Create a new VirtualBase. Table definition can be specified
using "create" SQL statement.

load[:file] Parse a file for VirtualBase query, which is usually starting
with a "create" statement followed by many "insert"
statements. (Action "load" does a "create" implicitly before
parsing the file.) The file argument is default to the name of
dbobj.

unload[:file] Save the VirtualBase to a file in the form of VirtualBase query.
The saved file is in the format that the "load" action can parse.

BEE Script User Reference 132

The file argument is default to the name of dbobj.

store[:sess] Store the VirtualBase to the session named sess. Note: The
sess is NOT a session variable. It is just a name specifically
for VirtualBase session storage.

restore[:sess] Restore the VirtualBase from the session named sess. (See
notes from "store".)

showcreatetable Return the "create table" SQL statement via the dbobj%result
variable (string).

showinsertinto Return the "insert into" SQL statements of all data rows via
the dbobj%result variable (array, one element for each row).

6.2.3 Supplementary Act ions

The two supplementary actions are used sparingly and only when there are absolute
needs to do so:

Supplementary
Actions

Description

push:var Put the record (in the named BEE Variable array) back to the
database so that it can be retrieved as the next record. The
"Pushed in" record will be cleared everytime a new query or a
seek operation is performed.

nextseq:[seq] Get the next sequence for insert-key generation. The result is
stored in the variable dbobj%lastseq.

Please note that not all database platforms support automatic
key generation. For those that do, the implementation may
be very different.

Some database platforms generate a new key value implicitly
whenever a record is inserted, and allow you to the generated
key without affecting its value (like MySQL).

Some others only allow you to get the key value from a
sequence name (the seq argument) and a new value is
generated every time it was accessed (like mSQL). The
sequence name is usually the table name (but does not have
to be). Therefore, the table name in dbobj%table is the
default seq.

(Please note that accessing to the variable dbobj%lastseq will
not cause a key generation as the variable is only a buffer
holding the sequence returned by the action "nextseq".)

The behaviour of "nextseq" is platform dependent and it is

BEE Script User Reference 133

dangerous to use it in the insert statement as two processes
may get the same value if the platform does not generate a
new key every time it was accessed. It is recommended to
insert via the "insert" action, instead of an explicit SQL insert
statement via the "query" parameter, unless you know exactly
what you’re doing and have the need to do so.

BEE Script User Reference 134

7 Content Management

To allow end users (website owners) to update the web content is one of the major
features that make BEE a class of its own.

The "content" of a business website is a synthesis of effort contributed by many different
people: art designers who put in beautiful graphics and background, operation staff who
collect and enter business data, programmers who write programs to process and present
raw data into useful information, and writers and individual business units who define the
message they want to deliver to the visitors.

BEE Content Management focus on helping the last group of people, whom have been
left out of the content cycle for too long. Every time they need to change a piece of
content or have a new message for the visitors, they need to rely on the web designers or
programmers to do it for them. BEE is going to turn this around, allowing the owner of the
content to take control of their content directly on the website with a browser, instead of
waiting (and in most cases paying) other people to do it for them.

7.1 What is Web Content

Web "content" is sometimes referred to as static information, as they remain unchanged
for majority of web pages. Those that are dynamically changed are usually the result of
an application operations (such as displaying the content of a shopping cart or a listing of
all staff in the department).

However, some information do not change often, but they do change sometimes. For
example, the "what’s new", the contact information, special promotion, newsletter etc.

In BEE, we define web content as information presented in a predefined area of a specific
web page. Web content comes in "units", called Web Content Unit. The system handles
Web Content Units as text variables (a special type of scheme class variables). You can
have a program script to handle Web Content Units, show them, hide them, even change
them, like they do variables.

When a Web Content Unit is being edited online, it will be surrounded by a dotted line
square so that the user what can be changed.

7.2 Virtual Page

The separation of design and content, and the independence of code and resources, have
made possible the online creation and maintenance of new pages without having to go
through the local authoring and uploading processes.

BEE Script User Reference 135

In another word, you can have only one page, and have it automatically load different
content into the TEA (Text Editing Area) based on the path-page of the URL. That is done
by setting up the web server to redirect a page-not-found error to a template page. Then
you can have that template page load the text content based on the path/page information
obtained from the web server.

Only one page is needed as the template and you can have as many pages as you want,
all with different contents and can be individually updated via the browser:

<h1><beetext "headline" default="Page not found"></h1>

<beetext "content" default="Please check the web address and try again">

When a visitor requests a non-existing page, say, http://www.mysite.com/news/sports.htm,
the web server will display the above page with the default text. However, if the visitor is
logged in as the administrator, instead of the page-not-found text (the "default"), two Text
Editing icons will display. The administrator can then click into the TES (Text Editing
Screen) and enter the text for each of the TEAs.

Upon saving the first TEA, the administrator has created the page by making the text item
available in the "text" class. No actual web page has been created on the web server;
only a piece of new content has been entered. That is what we called a "virtual page".

Note: In the current implementation of BEE, you can only submit a form to a Virtual Page
using the "GET" method.

BEE Script User Reference 136

8 Objec ts and Classes

8.1 Classes

Unlike in the Object-Oriented world that a "class" is a template of an "object" and an
"object" is an instance of a "class", in BEE terminology, "class" is "object" and "object" is
"class". Object templates are represented by their constructor functions and therefore are
not called "class" as in the proper Object-Oriented language.

To differentiate the "classes" that represent objects and those defined by the system, you
can call the former "object classes" and the latter "system classes" (or just "classes"). For
details, please refer to the "BEE Variable Name" Section.

8.2 Objects

BEE Objects are implemented with Variable Class. They can be read, written and
cleared. They are also locally defined. (i.e. remain in the local Context and become
undefined outside of the function unless declared "global".)

8.2.1 The Const ruc tor

Since BEE Objects are just Classes, you can create an object out of thin air by assigning
values into the class variables.

Alternatively, you can create an object with a Constructor function. You define the
Constructor function that initialise the class variables through the "this" class. Then you
call this Constructor function with the class name prefix. For example:

function vehicle
{
 var this%make = "(var)arg%m";
 var this%capacity = "(var)arg%c";
}

myVehicle%vehicle m="Toyota" c="4";

Every class has a special variable called "function", which contains the references to all
the functions (or methods) associated with that class.

For example, var myVehicle%function:new = "vehicle" will define a function
"myVehicle%new", which will refer to the function "vehicle" when it is called. In that case,
the constructor call can be rewritten in the following way:

var myVehicle%function:new = "vehicle";
myVehicle%new m="Toyota" c="4";

There is a special syntax to express the above in one statement:

var myVehicle% = new vehicle m="Toyota" c="4";

BEE Script User Reference 137

The "new" operator is commonly used in calling the constructor, instead of direct call in the
first two examples.

However, in BEE Tag, there is not "new" operator and you need to use direct call as in the
following:

<beemyVehicle%vehicle m="Toyota" c="4">

or

<bee var="myVehicle%function:new" value="vehicle">
<beemyVehicle%new m="Toyota" c="4">

8.2.2 Calling an Object Method

BEE Script: ObjName%funcname [name=value ...];

BEE Tag: <beeObjName%funcname [name=value ...]>

When calling a function in the above format, it will first find the function funcname from the
object ObjName. The object’s function needs to be set in the constructor using var
this%function:funcnam = "actual_function_name";, where the actual_function_name is a
name defined with the "function" command.

If the function name of the object is not set, the actual function of the same name will be
called.

There are three extra arguments that can be accessed within the function:
arg%function:this, which evaluates to ObjName, arg%function:thisfunction, which
evaluates to funcname, and arg%function:function, which evaluates to
actual_function_name.

For example, if the object "myobj" gets var this%function:mymethod = ’myfunc’; and the
method is invoked with myobj%mymethod a=1 b=2; then:

arg%function:a 1
arg%function:b 2
arg%function:this myobj
arg%function:thisfunction mymethod
arg%function:function myfunc
arg%a 1
arg%b 2
arg%this myobj
arg%thisfunction mymethod

BEE Script User Reference 138

Note: ObjName can contain BEE Variables. However, the current version of the parser
handle BEE Variable as ObjName only if there is no space, ">" or "]" in the variable syntax.
e.g. {v}%func; is OK, but {v|replace:\ ,x}%func is not because of the space in
the conversion argument. Also, funcname cannot contain an "%" in its syntax.

8.2.3 Polymorphism

Polymorphism in the BEE is implemented with function reference. Every object class has
a "function" variable, of which every element is a definition of a function name. For
example:

var car1%model = "Camry";
var car2%model = "Diablo";

var car1%function:whatType = "familyCar";
var car2%function:whatType = "playCar";

function familyCar
{
 display "{this%model} is a car for the family.";
}

function playCar
{
 display "{this%model} is for fun.";
}

car1%whatType; // Camry is a car for the family.
car2%whatType; // Diablo is for fun.

8.2.4 Inheritance

Inheritance in BEE is done by the child’s constructor calling the parent’s, so the object
have all the child’s variables (object attributes) and functions (method), PLUS all the
parent’s variables and functions.

In the following example, Vehicle has two Child classes: car and plane. We use the same
constructor vehicle in the previous example and create two more:

function vehicle
{
 var this%make = "{arg%m}";
 var this%capacity = "{arg%c}";
 var this%function:do = "dontknow";
}

function car
{
 this%vehicle m="{arg%m}" c="{arg%c}";

BEE Script User Reference 139

 var this%wheel = "{arg%w}";
 var this%function:do = "drive";
}

function plane
{
 this%vehicle m="{arg%m}" c="{arg%c}";
 var this%engine = "{arg%e}";
 var this%function:do = "fly";
}

function drive
{
 display "{arg%who} drive {arg%this}
\n";
}

function fly
{
 display "{arg%who} fly {arg%this}
\n";
}

function dontknow
{
 display "{arg%who} don’t know what to do with {arg%this}
\n";
}

var myCar% = new car m="Toyota" c="4" w="alloy";
var myPlane% = new plane m="Boeing" c="400" e="jet";
var mySpaceship% = new vehicle m="Alien Nation" c="4000";

myCar%do who="I";
myPlane%do who="You";
mySpaceship%do who="We";

Note: When an object function needs to call another function of the same object, it is
recommended to call into the absolute name instead of the object function name in case
the callee function is overloaded. For example:

function vehicle
{
 var this%make = "{arg%m}";
 var this%capacity = "{arg%c}";
 var this%function:do = "dontknow";
 var this%function:start = "vehicle_start";
 var this%function:findkey = "vehicle_findkey";
}

function car
{
 this%vehicle m="{arg%m}" c="{arg%c}";
 var this%wheel = "{arg%w}";
 var this%function:do = "drive";

BEE Script User Reference 140

}

function vehicle_start
{
 this%findkey; // For safety, replace this by this%vehicle_findkey;
 display "Start Vehicle.
\n";
}

function vehicle_findkey
{
 display "Find the key of the Vehicle.
\n";
}

The above worked fine, but if the constructor of "car" overload the function findkey (e.g.
var this%function:findkey = "car_findkey";), then vehicle_start will call into "car_findkey". If
this is not your intention, please replace "this%findkey;" with "this%vehicle_findkey;".

Calling on the actual function name allows the children object to call an overloaded parent
function without ambiguity.

8.2.5 Object w ithin Object

While the "this%" class holds variables of the object, there is no equivalent construct to
hold another object within an object. However, this can be worked around by context
linking into the constructor’s local context.

The constructor is a function to create the object. It can also create other objects in its
local context. These "member" object can be in possession of the "main" object.

However, once the constructor exists, the local context is lost and gone with the "member"
object. One way to keep the context (and therefore any "member" objects in it) alive is to
save the context into an object variable (e.g. this%context). Subsequent calls to the
object’s methods can reacquire access to the constructor’s local context (and therefore the
"member" objects in it).

function person
{
 var this%name = "{arg%name}";
}

function car
{
 var this%context = "{sys%context}"; // Save context
 var ownerobj = new person name="{arg%name}"; // An object name

 var this%make = "{arg%make}"; // A string
 var this%function:belongsto = "car_belongsto";
}

function car_belongsto

BEE Script User Reference 141

{
 // Link "ownerobj" from "car"’s local context to the current one.
 var ownerobj% =& ownerobj% context="{this%context}";
 display "This {this%make} belongs to {ownerobj%name}";
}

var myCar = new car make="Ford" name="John Lee";
myCar%belongsto; // This Ford belongs to John Lee

Sometimes, you may not want to keep the object externally and pass to the object method
when calling. In that case, the "parent" command is required to access the external object
from the method.

function car
{
 var this%make = "{arg%make}"; // A string
 var this%function:belongsto = "car_belongsto";
}

function car_belongsto
{
 parent "{arg%owner}%"; // The owner object is from the parent
 display "This {this%make} belongs to {{arg%owner}%name}";
}

var jl = new person name="John Lee";
var myCar = new car make="Ford";

myCar%belongsto owner="jl";

The need for a "parent" command is not always obvious. For example, if the method does
not access the external object but calls another function that does, "parent" is still required
in the method function to "pass on" the linkage.

function car_belongsto
{
 parent "{arg%owner}%"; // This is required to pass on
 this%car_ownersname owner="{arg%owner}";
 display "This {this%make} belongs to {result%car_ownersname}";
}

function car_ownersname
{
 parent "{arg%owner}%"; // linked to the caller’s context
 var result%function = "{{arg%owner}%name}";
}

In "car_ownersname", the {arg%owner}% is linked to the same variable in the caller’s
context. If "parent" is missing from "car_belongsto", "car_ownersname" will link to no
object.

BEE Script User Reference 142

8.2.6 Database Object – an Example

Here is the complete working source code of the database object (dbobj) in the common
library (common/dbobj.bs), as an example to show how to wrap a database in a nutshell, I
mean, object:

<script language="bee">

/**

 * dbobj: Database Object

 *

 * arg%table = the table name (default is the object name {arg%this})

 *

 * Object variables:

 * %matrix the name of the matrix used. Default "matrix"

 * %dbid the dbid. Default ""

 * %status the status of last database operation

 * %message the message of last database operation

 *

 * All other object variables are "inherited" from the database command

 **/

function dbobj

{

 var this%table = "{arg%table}";

 if ({#this%table:} == 0) var this%table = "{arg%this}";

 var this%matrix = "{arg%this}_matrix";

 var this%dbid = "{arg%dbid}";

 var this%status = 0;

 var this%message = "";

 var this%function:query = "dbobj_query";

 var this%function:select = "dbobj_action";

 var this%function:update = "dbobj_action";

 var this%function:insert = "dbobj_action";

 var this%function:delete = "dbobj_action";

 var this%function:create = "dbobj_dbtact";

 var this%function:load = "dbobj_dbtact";

 var this%function:unload = "dbobj_dbtact";

 var this%function:group = "dbobj_group";

 var this%function:menu = "dbobj_menu";

 var this%function:matrixdump = "dbobj_matrix_dump";

 var this%function:dump = "dbobj_dump";

}

/**

 * dbobj_query: Send a query to the database

 *

 * arg%query (default) = the query string

BEE Script User Reference 143

 * arg%seek = the seek parameter for the database command

 **/

function dbobj_query

{

 if ({#arg%function:seek} > 0) var param%database:seek = "{arg%function:seek}";

 database this query="{arg%query}" dbid="{this%dbid}";

}

/**

 * dbobj_action: Called via dbobj%select, dbobj%update, dbobj%insert, dbobj%delete

 * to carry out the corresponding database command

 *

 * arg%thisfunction = the action parameter for the database command

 * arg%seek = the seek parameter for the database command

 **/

function dbobj_action

{

 parent "{this%matrix}%";

 if ({#arg%function:seek} > 0) var param%database:seek = "{arg%function:seek}";

 database this matrix="{this%matrix}" action="{arg%thisfunction}" dbid="{this%dbid}";

}

/**

 * dbobj_dbtact: Called via dbobj%create, dbobj%load, dbobj%unload

 * to carry out the corresponding dbtree command

 *

 * arg%function:this = the name of the dbtree object in the calling statement

 * arg%thisfunction = the action parameter for the database command

 **/

function dbobj_dbtact

{

 parent {arg%function:this}%;

 database "{arg%function:this}" name="{this%name}" action="{arg%thisfunction}"

dbid="{this%dbid}";

}

/**

 * dbobj_group: Perform the "group" command on the specified

 * variable into the class specified by this%matrix and

 * set the group result into the object.

 *

 * arg%group (default) = the variable to be grouped.

 * If this%matrix is blank, set it to {arg%this}_matrix

 **/

function dbobj_group

{

 var gvar = "{arg%{arg%thisfunction}}";

BEE Script User Reference 144

 if ({#gvar:} == 0) return;

 parent "{gvar}";

 if ({#this%matrix} == 0) var this%matrix = "{arg%this}_matrix";

 // The "group" command always operates in the local context.

 // Needs to link the variables it changes to the parent.

 parent "{arg%this}%";

 parent "{this%matrix}%";

 group "{gvar}" matrix="{this%matrix}" result="{arg%this}";

}

/**

 * dbobj_matrix_dump: Dump the matrix

 **/

function dbobj_matrix_dump

{

 if ({#this%matrix} == 0) return;

 if ({#this%keys} == 0) return;

 if ({#this%fields} == 0) return;

 parent "{this%matrix}%";

 display "<table>\n<tr valign=top><td>Key</td>\n";

 foreach (this%fields) display "<td>{foreach}</td>\n";

 display "</tr>\n";

 foreach (this%keys as key)

 {

 display "<tr valign=top><td>{key}</td>\n";

 foreach (this%fields as field) display

"<td>{{this%matrix}%{key}:{field}}</td>\n";

 }

 display "</table>\n";

}

/**

 * dbobj_dump: Dump the database object

 *

 * arg%fieldlist = the name of the fields to display in the format of

 * key=>val where key is the caption and value is the field name.

 * If the caption is preceeded by ’!’, val is a derived value with

 * @f for value, where f is the field name;

 * arg%pagesize = the maximum number of records in a page

 * arg%form = the input tag attributes

 * @key for the value of the key field

 * (form is displayed only if the object got the keyfield defined)

 * arg%td = the td tag attributes

 * arg%format = the field formats (read-only fields only)

 * arg%hiddenvalue = the array of values that are hidden, indexed by fieldname

BEE Script User Reference 145

 * arg%readonlyvalue = the array of values that are read-only, indexed by fieldname

 **/

function dbobj_dump pagesize=10

{

 if (’{this%table}’ == ’’ || ’{this%status}’ > 0) return;

 // Now we got a proper table with OK status and at least some records.

 var hl = "(array)#e0ffff,#ffffff"; // Alternative highlighting

 var hli = 0; // Highlight index

 var fieldlist = "(var)arg%fieldlist";

 if ({#fieldlist} == 0) var fieldlist = "(var)this%fieldlist";

 display "<table>\n";

 // Display the header

 display "<tr bgcolor=#808080>\n";

 foreach (fieldlist)

 {

 if ({foreach:key|foundre:^[0-9]}) var caption = "{foreach}";

 else var caption = "{foreach:key|replacere:^!}";

 display "<td>{caption|words}</td>\n";

 }

 display "</tr>\n";

 foreach maxiter="{arg%pagesize}" ((db)this as rec)

 {

 display ’<tr valign=top bgcolor="{hl:{hli}}">\n’;

 //var fldcnt = 0;

 var keyValue = "{rec:{this%keyfield}}";

 foreach (fieldlist as fld)

 {

 display "<td {arg%td:{fld:key}}>";

 //display "{fld:key}:" conv="if:’{fld:key}’ !=

’{this%fieldlist:{fldcnt}}’";

 //display "{fld|{{name}%decode:{fld:key}}}</td>\n";

 if ({fld:key|foundre:^!})

 {

 var fldValue = "{fld}";

 foreach (this%fieldlist) var fldValue =

"{fldValue|replace:@{foreach},{rec:{foreach}}}";

 display "{fldValue}";

 } else

 {

 var fldFormatted = "{rec:{fld}}";

 if ({#arg%format:{fld}}) var fldFormatted =

"{arg%format:{fld}|replace:@fldval,{fldFormatted}}";

 if ({#keyValue:} == 0 || (’{fld}’ != ’{this%keyfield}’ &&

{#arg%form:{fld}} == 0))

 {

 display ’{fldFormatted}’;

 } else

 {

BEE Script User Reference 146

 var hiddenFld = ’<input type=hidden

name="{fld}_{keyValue}" value="{rec:{fld}|replace:\\\\","}">’;

 var readonlyFld = ’{hiddenFld}{fldFormatted}’;

 var shownFld = ’<input type=text

name="{fld}_{keyValue}" value="{rec:{fld}|replace:\\\\","}"

{arg%form:{fld}|replace:@key,{keyValue}}>’;

 if ({arg%hiddenvalue:{fld}|isset} && ’{rec:{fld}}’ ==

’{arg%hiddenvalue:{fld}}’)

 display ’{hiddenFld}’;

 else if ({arg%readonlyvalue:{fld}|isset} &&

’{rec:{fld}}’ == ’{arg%readonlyvalue:{fld}}’)

 display ’{readonlyFld}’;

 else if (’{fld}’ == ’{this%keyfield}’)

 display ’{readonlyFld}’;

 else

 display ’{shownFld}’;

 }

 }

 display "</td>\n";

 //var fldcnt = "(expr){fldcnt} + 1";

 }

 display "</tr>\n";

 if ({hli} > 0) var hli = 0;

 else var hli = "(expr){hli}+1";

 }

 display "</table>\n";

}

/**

 * dbobj_menu: Display the record set as a menu

 *

 * arg%self = the name of the field holding the "Self" value

 * arg%root = the root node name

 * arg%active = the active node name

 * arg%show = the minimum "activeness" to show

 * arg%indent = the indentation "tab"

 * arg%format:node the format of the node

 * arg%format:current the format of the current node (default arg%format:node)

 * arg%format:open the format of opened nodes (default arg%format:current)

 * arg%format:close the format of closed nodes (default arg%format:open)

 * arg%format:off the format of off nodes (default arg%format:close)

 * arg%format:currentparent the format of the current node if it’s a parent

(default arg%format:current)

 * arg%format:openparent the format of opened parent nodes (default

arg%format:open)

 * arg%format:closeparent the format of closed parent nodes (default

arg%format:close)

 * arg%format:offparent the format of off parent nodes (default arg%format:off)

 * arg%prev = the parent variable name to receive the record preceeding the current one

 * arg%next = the parent variable name to receive the record following the current one

 **/

BEE Script User Reference 147

function dbobj_menu show=1 indent=" "

{

 var format = (var)arg%format;

 if (!{format:current|isset}) var format:current = "{format:node}";

 if (!{format:open|isset}) var format:open = "{format:current}";

 if (!{format:close|isset}) var format:close = "{format:open}";

 if (!{format:off|isset}) var format:off = "{format:close}";

 if (!{format:currentparent|isset}) var format:currentparent = "{format:current}";

 if (!{format:openparent|isset}) var format:openparent = "{format:open}";

 if (!{format:closeparent|isset}) var format:closeparent = "{format:close}";

 if (!{format:offparent|isset}) var format:offparent = "{format:off}";

 var lead = "(array)

 30=>{format:current},

 20=>{format:open},

 10=>{format:close},

 00=>{format:off},

 31=>{format:currentparent},

 21=>{format:openparent},

 11=>{format:closeparent},

 01=>{format:offparent}";

 dbtree this self="{arg%self}" root="{arg%root}" active="{arg%active}";

 var minact = "{arg%show}";

 if ({#minact:} == 0) var minact = 1;

 var gotCurrent = 0;

 foreach ((dbtree)this as rec)

 {

 if ({result%this:activeness} >= {minact})

 {

 var dispstr = "{lead:{result%this:activeness}{result%this:isparent}}";

 var dispstr = "{dispstr}"

conv="replace:@@INDENT,{arg%indent|repeat:{result%this:level}}";

 var dispstr = "{dispstr}"

conv="replace:@@ACTIVENESS,{result%this:activeness}";

 var dispstr = "{dispstr}"

conv="replace:@@ISPARENT,{result%this:isparent}";

 var dispstr = "{dispstr}" conv="replace:@@LEVEL,{result%this:level}";

 foreach (rec) var dispstr = "{dispstr}"

conv="replace:@{foreach:key},{foreach}";

 display "{dispstr}";

 }

 switch ({gotCurrent})

 {

 case 0:

 if ({result%this:activeness} == 3) var gotCurrent = 1;

 else var prev = "(var)rec";

 break;

 case 1:

 var next = "(var)rec";

BEE Script User Reference 148

 var gotCurrent = 2; // The work to obtain prev and next is finished

 break;

 }

 }

 if ({arg%prev|isset} && {prev|isset})

 {

 parent "{arg%prev}";

 var "{arg%prev}" = "(var)prev";

 }

 if ({arg%next|isset} && {next|isset})

 {

 parent "{arg%next}";

 var "{arg%next}" = "(var)next";

 }

}

</script>

BEE Script User Reference 149

9 Interface w ith other languages

BEE is a server side scripting language, but it was designed to be compatible with most
client-side scripts and scripting languages. BEE Tag was introduced so that it can intermix
with HTML. Building client-side JavaScript was a common way of passing server
information to the interactive client interface. Also, BEE can interleave with its
implementation language (PHP at the moment) within one web page.

9.1 BEE and HTML

Every BEE Command got a BEE Tag form of which the format is similar to HTML Tag. Its
usage with HTML is limited only by the programmers imagination. For example, you can
maintain the form context by inserting the BEE Form Variables:

<input type=text name=GivenName value="${sys%form:GivenName}">

<input type=text name=Surname value="${sys%form:Surname}">

<input type=text name=Age value="${sys%form:Age}">

<input type=text name=Title value="${sys%form:Title}">

To keep the <select …> tag value is straight forward in BEE:

<bee var=sel:{sys%form:Title} value="selected">
<select name=Title>
<option value="">--select Title--</option>
<beeforeach "(array)Mr,Ms,Mrs,Miss,Dr">
<option value="${foreach}" ${sel:{foreach}}>${foreach}</option>
</beeforeach>
</select>

9.2 BEE and JavaScript

JavaScript is a client-side language and is therefore part of the visible web page source.
BEE can build JavaScript by outputting its code. For example, the following build a
JavaScript array variable from a BEE (server side) array:

display ’<script language="JavaScript">\n’;
display ’var jsCars = new Array\n’;
foreach (cars as model)
 display ’jsCars["{model:key}"] = "{model}";\n’;
display ’</script>\n’;

BEE can conditionally turned on or off section of JavaScript:

if (’{scheme%discount}’)
{

display ’<script language="JavaScript">\n’;
display ’price = price * (1 – {scheme%discount} / 100);\n';
display 'alert("Now you can get {scheme%discount}% discount!");\n';
display '</script>\n';

BEE Script User Reference 150

}

9.3 BEE and PHP

The current version of BEE is implemented in PHP. Naturally, you can run sections of a
BEE Web Page in native PHP code. All global PHP variables that BEE uses in the
implementation start with "BEE_". If you are writing PHP codes in a BEE Web Page,
please make sure you do not use a variable name that starts with "BEE_".

To access the BEE environment from a PHP section, there are several functions you can
use.

9.3.1 BEE_get ($value)

Return the BEE Value contained in the expression value. Anything you can put into the
"value" parameter of the "var" command, can be used as the argument of BEE_get().

The value after BEE evaluation will be returned. Please note that this is not a reference. It
is a copy of the value, even if it is specified as "(var)…". Changing the PHP Variable
returned from BEE_get("(var)…") will not affect the value of the underlying BEE Variable.
If you want to retrieve a reference to a variable so that your modification to that variable
from PHP will be effective in the BEE Scope, please use BEE_var().

9.3.2 BEE_var($varname)

Return a PHP variable reference to the BEE Variable identified by varname. If the
element part is omitted, the array form of the BEE variable will be returned.

Please note the followings:

Remember to use "=&" to receive the reference. e.g. $a =& BEE_var("apple");

Be aware that an array is returned if the element part is omitted. For example:

<script language="bee">
var myVar = "abc";
</script>
<?php
$arr =& BEE_var("myVar"); // an array in which $arr[""] is "abc"
$elm =& BEE_var("myVar:"); // a scaler "abc"
?>

Specifying a non-existing element will create that element in the variable array with null.
(This is the same in BEE Script when referring an element with the (var) cast, like
"(var)myVar:newElement".)

<script language="bee">
var myVar:x = "abc"; // a single-element array
</script>

BEE Script User Reference 151

<?php
$elm =& BEE_var("myVar:y");
// Now the BEE Variable myVar got a new element y (null value)
// and becomes a two-element array.
$elm = "def"; // myVar now x=>"abc",y=>"def"
?>

System Class BEE Variables have no corresponding PHP variable reference and
therefore cannot be accessed via BEE_var(). You can only use BEE_get () and
BEE_set() to access them. If you retrieve a System Class BEE Variables by
BEE_var(), the returned reference has no effect on the BEE Variables at all. In fact,
such PHP Variables is not in the BEE Scope.

The "file" part in varname will be ignored if specified.

9.3.3 BEE_isset ($varname)

Return a PHP true value if the BEE Variable identified by varname is defined, or false if
otherwise. This is the same as "{varname|isset}" except that it returns a PHP true or false
value instead of 1 or 0.

Please note the followings:

BEE_isset will return false if a System Class BEE Variable name is specified.

The "file" part in varname will be ignored if specified.

9.3.4 BEE_set ($varname, $st ring)

Set the string to the variable varname. Please note that string is not subject to any BEE
evaluation. It is put straight into the variable named by varname. In fact, BEE_set is
equivalent to "var varname =! string" in BEE Script.

If you want the string to be evaluated, please use BEE_get() first.
e.g. BEE_set($myPHP, BEE_get("{myBEE}"));

9.3.5 BEE_clear($varname)

Clear the variable varname.

BEE Script User Reference 152

9.3.6 BEE_convert ($value, $conversion)

Return the result of the PHP expression or variable after the BEE Conversion specified in
conversion. If the argument value is a PHP variable reference, changes by the BEE
Conversion (if the BEE Conversion accept pass by reference) will be effective on the PHP
variable. For example:

<?php
$a = 1;
$b = BEE_convert($a, "inc");
printf("a=%d b=%d\n", $a, $b); // a=1 b=2
$x = 1;
$y = BEE_convert(&$x, "inc");
printf("x=%d y=%d\n", $x, $y); // x=2 y=2
?>

9.3.7 BEE_do($funcname)

Call the BEE Function or Command named by funcname. The arguments can be set via
param%funcname:argname variable before the function call. The result can be accessed
by means of result%funcname.

Please note that the parameters are to be set exactly as they appear in the calling
statement. If a variable is to be passed, please use "(var)…" instead of BEE_var(). If you
want strings to be BEE evaluated, please use BEE_get(). Object function calls need to set
the object name as the "this" parameter instead of including it in the function name. For
example:

<script language="bee">
myobj%myfunc argone="abc" argtwo="(var)myvar" timenow="{sys%time}";
foreach (result%myfunc) display "{foreach:key}: {foreach}
\n";
</script>

is equivalent to

<?php
$param["argone"] = "abc";
$param["argtwo"] = "(var)myvar";
$param["timenow"] = BEE_get("{sys%time}");
$param["this"] = "myobj";
BEE_set("param%myfunc", $param);
BEE_do("myfunc");
$result = BEE_get("(var)result%myfunc");
foreach ($result as $k => $v) printf("$k: $v
\n");
?>

Please note that the first four groups of BEE Commands, Variable Operations,
Conditional, Loop and Module Calling, CANNOT be called via BEE_do(), with the exeption
of "clear", "group", "include" and "exec" (which you can use even they fall into one of the
four groups).

BEE Script User Reference 153

BEE Script User Reference 154

10 Glossary

AMS – Please see "Authentication Mechanism Specification".

Attribute Name – The Name part of an Attribute Name-Value Pair.

Attribute Name-Value Pair – Parameter specification in a BEE Command in the form of
name=value.

Attribute Value – The Value part of an Attribute Name-Value Pair, optionally quoted by a
pair of single or double quotation marks if the value string contains white spaces.

Authentication Mechanism Specification – a CROFT record that tells the BEE system
where to find the user/password table, its database type, the server, the database and
table name, field mapping and how to decode the password.

BEE – Please see "Business Electronic Enterprise".

BEE Code Section – The section in the web page between two neighbouring <script
language="bee"> tag and </script> tag inclusively.

BEE Command – One of the commands specified in the "BEE Command Reference"
section of this document. A BEE Command is used in this document to refer to the
operation (the BEE Command Name) and its parameters. A BEE Command may
appear as a BEE Statement or a BEE Tag.

BEE Command Name – The operation of a BEE Command. It is the first word of the
BEE Command, less the object reference if exists in BEE Script, or in the case of BEE
Tag, less the "<bee" part. (Please see "BEE Command".)

BEE Conversion – A function that convert a value into another value, which is used in
place of the original one.

BEE Hosting Administrator – The person who administer the BEE Hosting Server

BEE Hosting Provider – The organisation who provides the BEE Hosting Service

BEE Hosting Server – The computer which runs the BEE software along with other
necessary programs and/or system to serve web pages from a BEE Website to the
visitors.

BEE Hosting Services – The service of providing, running and administering a BEE
Hosting Server.

BEE Script – Please see "BEE Script Syntax" and "BEE Statement".

BEE Script Syntax – A BEE program code syntax in which the command starts with the
command name, is optionally followed by some name=value pairs, and is terminated
with a semi-colon ';'.

BEE Script User Reference 155

BEE Section – The part of the web page containing BEE operation, which will be
replaced by its output before the web page is sent to the client browser. BEE Script
surrounded by <script language="bee"> and </script> inclusively is a BEE Section. A
BEE Tag is a BEE Section by itself. Content between two neighbouring BEE Tags
(white pages or else) is NOT part of a BEE Section.

BEE Statement – The smallest unit of independent operation in BEE Script syntax. A
BEE Statement starts with a BEE Command and ends with a semi-colon (';'). A BEE
Statement must be placed in a BEE Code Section.

BEE Web Path – Identified by an idURL of a BEE Website, and contains all the web
pages of which the URL starts with the idURL after the protocol specification (http://).

BEE Tag – The smallest unit of independent operation in BEE Tag syntax. A BEE Tag
starts with "<beecommand" and ends with ">", where command is a valid BEE
Command. A BEE Tag must NOT be placed in a BEE Code Section.

BEE Tag Syntax – A BEE program code syntax in which the command starts with "<bee"
followed by the command name immediately after it (with no spaces), then a series of
optional name=value pairs, and ends with ">".

BEE Variable – A run-time storage content of a BEE program, implemented as an array
containing BEE Elements.

BEE Variable Name – Name of a BEE Variable in the form of
[class%][file&]name[:[#]element]. A Variable Name without the element
part (i.e. [class%][file&]name) mean the whole array or the string value of the
Default Element (the element indexed by blank). Please see the "To String or Not to
String" section.

BEE Website – A collection of BEE Web Paths, each identified by an idURL.

Business Electronic Enterprise – A web technology to enable easy development of
commercial website through server-side scripting.

Code Section – Please see "BEE Code Section".

Command – Please see "BEE Command".

Command Name – Please see "BEE Command Name".

Conversion – Please see "BEE Conversion".

Context – A section of program code where a set of BEE Variables are defined separately
from those outside of the section. When the execution leaves the section (e.g. a
function), the BEE Variables defined in that section will be undefined.

CROFT – Please see "Customer Resource Online Facility Tables".

Customer Resource Online Facility Tables – An automatic system to bind resources to
website according to their URL, so that the knowledge of the resource identification is
concealed from the code.

BEE Script User Reference 156

DAS – Please see "Database Access Specification".

Database Access Specification – A CROFT record uniquely identified by an idURL and
a DBID. A DAS describes a database access and contains information like Database
Type, Database Host, Database Name, and the Username and password to gain
access to the database on its data server. This information is stored within CROFT.

Default Element – The element in a variable which is indexed by blank. When a variable
is specified without the element part (i.e. class%name), it will be taken as the default
element unless in the Context where an array will be assumed.

DBID – An identifier that, together with an idURL, identify a DAS. This is useful for a web
page to access multiple databases when necessary. For those pages that access
none or a single database, DBID is not necessary (or is set to blank).

Element – An item in the array of a BEE Variable.

Hosting Administrator – Please see "BEE Hosting Administrator".

Hosting Provider –Please see "BEE Hosting Provider".

Hosting Server – Please see "BEE Hosting Server".

Hosting Services – Please see "BEE Hosting Services".

idURL – A partial URL that starts with the full web server name without the protocol
specification (http://), and optionally followed by a path and/or a page. An idURL
identifies a BEE Web Path. A collection of BEE Web Paths forms a BEE Website.

Loop Variable – The variable in a "foreach" or "for" loop that is updated by the system in
every iteration by either assigning it the next item (in "foreach" loop) or increasing or
decreasing its value (in "for" loop).

Matrix – A set of variables defined under a class (object) which serves as a two-
dimensional array, with each variable representing a record (the variable name is the
key) and its elements representing a field in the record.

OnMyWeb – The developer and intellectual property owner of BEE.

Owner-Service Duple – A dual-key uniquely identify a BEE Website. The Owner usually
stands for the organisation that uses the BEE Website for its own purpose (or a web
hosting customer in a BEE Hosting Provider environment). The Service usually
stands for the name of the BEE Website name within the organisation, or just "main" if
the organisation has only one BEE Website on the server.

Parameter – Arguments passed into a BEE Command or a function in the form of an
Attribute Name-Value Pair.

Reference – An alias of a variable name. All BEE Variable Names are in fact references
to the variable itself.

Scope – The set of resources that a web page or website have access to. The resources
are allocated to the URL when the website is set up.

BEE Script User Reference 157

SME – Small to Medium Enterprise.

Statement – Please see "BEE Statement".

Tag – Please see "BEE Tag".

Variable – Please see "BEE Variable".

Variable Name – Please see "BEE Variable Name".

Variable Value – Please see "BEE Variable Value".

Virtual Page – A BEE feature that allows the website administrator to modify web content
or create new web pages through the very website, without any authoring tools but
the browser (Internet Explorer 6 or later).

Web Content – Information presented in a predefined area of a web page

Web Content Unit – A piece of Web Content that is always handled in a whole unit and
allow online editing in a square shape area.

